{"title":"高速和非易失性硅纳米晶存储器,用于高场敏感隧道势垒的缩放闪存技术","authors":"Seungjae Baik, Siyoung Choi, U. Chung, J. Moon","doi":"10.1109/IEDM.2003.1269341","DOIUrl":null,"url":null,"abstract":"For the first time, a nitride/oxide/nitride stacked tunnel structure is adopted as highly field-sensitive tunnel barrier to improve both program/erase speed and data retention of nanocrystal memory. Product-adaptive nonvolatility (>10 years at 85/spl deg/C) and cycling endurance (>10/sup 6/) were obtained with the program time of 10 /spl mu/s at V/sub G/=8 V and the erase time of 100 /spl mu/s at V/sub G/=-8 V with 0.84 V threshold window. The program speed was 100 times faster and the voltage was about 10 V smaller than those of a conventional NAND type flash memory cell. These results strongly suggest that nanocrystal floating gate memory becomes a promising solution to overcome the scaling limitation of the conventional floating gate memory cell.","PeriodicalId":344286,"journal":{"name":"IEEE International Electron Devices Meeting 2003","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"High speed and nonvolatile Si nanocrystal memory for scaled flash technology using highly field-sensitive tunnel barrier\",\"authors\":\"Seungjae Baik, Siyoung Choi, U. Chung, J. Moon\",\"doi\":\"10.1109/IEDM.2003.1269341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, a nitride/oxide/nitride stacked tunnel structure is adopted as highly field-sensitive tunnel barrier to improve both program/erase speed and data retention of nanocrystal memory. Product-adaptive nonvolatility (>10 years at 85/spl deg/C) and cycling endurance (>10/sup 6/) were obtained with the program time of 10 /spl mu/s at V/sub G/=8 V and the erase time of 100 /spl mu/s at V/sub G/=-8 V with 0.84 V threshold window. The program speed was 100 times faster and the voltage was about 10 V smaller than those of a conventional NAND type flash memory cell. These results strongly suggest that nanocrystal floating gate memory becomes a promising solution to overcome the scaling limitation of the conventional floating gate memory cell.\",\"PeriodicalId\":344286,\"journal\":{\"name\":\"IEEE International Electron Devices Meeting 2003\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Electron Devices Meeting 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2003.1269341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Electron Devices Meeting 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2003.1269341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High speed and nonvolatile Si nanocrystal memory for scaled flash technology using highly field-sensitive tunnel barrier
For the first time, a nitride/oxide/nitride stacked tunnel structure is adopted as highly field-sensitive tunnel barrier to improve both program/erase speed and data retention of nanocrystal memory. Product-adaptive nonvolatility (>10 years at 85/spl deg/C) and cycling endurance (>10/sup 6/) were obtained with the program time of 10 /spl mu/s at V/sub G/=8 V and the erase time of 100 /spl mu/s at V/sub G/=-8 V with 0.84 V threshold window. The program speed was 100 times faster and the voltage was about 10 V smaller than those of a conventional NAND type flash memory cell. These results strongly suggest that nanocrystal floating gate memory becomes a promising solution to overcome the scaling limitation of the conventional floating gate memory cell.