经典不等式与动态不等式在时间尺度上合并的类比

Muhammad Jibril Shahab Sahir
{"title":"经典不等式与动态不等式在时间尺度上合并的类比","authors":"Muhammad Jibril Shahab Sahir","doi":"10.7862/rf.2020.10","DOIUrl":null,"url":null,"abstract":"In this paper, we present analogues of Radon’s inequality and Nesbitt’s inequality on time scales. Furthermore, we find refinements of some classical inequalities such as Bergström’s inequality, the weighted power mean inequality, Cauchy–Schwarz’s inequality and Hölder’s inequality. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. AMS Subject Classification: 26D15, 26D20, 34N05.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analogy of Classical and Dynamic Inequalities Merging on Time Scales\",\"authors\":\"Muhammad Jibril Shahab Sahir\",\"doi\":\"10.7862/rf.2020.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present analogues of Radon’s inequality and Nesbitt’s inequality on time scales. Furthermore, we find refinements of some classical inequalities such as Bergström’s inequality, the weighted power mean inequality, Cauchy–Schwarz’s inequality and Hölder’s inequality. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. AMS Subject Classification: 26D15, 26D20, 34N05.\",\"PeriodicalId\":345762,\"journal\":{\"name\":\"Journal of Mathematics and Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7862/rf.2020.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/rf.2020.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了Radon不等式和Nesbitt不等式在时间尺度上的类比。此外,我们还发现了一些经典不等式的改进,如Bergström不等式、加权幂平均不等式、Cauchy-Schwarz不等式和Hölder不等式。我们的研究统一和推广了一些连续不等式及其相应的离散类似不等式。AMS学科分类:26D15、26D20、34N05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analogy of Classical and Dynamic Inequalities Merging on Time Scales
In this paper, we present analogues of Radon’s inequality and Nesbitt’s inequality on time scales. Furthermore, we find refinements of some classical inequalities such as Bergström’s inequality, the weighted power mean inequality, Cauchy–Schwarz’s inequality and Hölder’s inequality. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. AMS Subject Classification: 26D15, 26D20, 34N05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信