半导体制造过程模糊建模的统计数据预处理

R.L. Chen, C. Spanos
{"title":"半导体制造过程模糊建模的统计数据预处理","authors":"R.L. Chen, C. Spanos","doi":"10.1109/IFIS.1993.324224","DOIUrl":null,"url":null,"abstract":"A systematic algorithm is proposed to design a fuzzy inference system through statistical data pre-processing. This approach is appropriate in modeling the qualitative aspects of a semiconductor manufacturing process, when extensive training data are often limited or difficult to collect due to the high cost of conducting experiments. With the limited number of data sets from a designed experiment, our system employs a proper statistical analysis to extract simple fuzzy inference rules of input-output relationships and initialize the corresponding membership functions. The output process variable can be continuous or categorical, and the fuzzy system can be further tuned to accommodate newly acquired experimental data.<<ETX>>","PeriodicalId":408138,"journal":{"name":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistical data pre-processing for fuzzy modeling of semiconductor manufacturing process\",\"authors\":\"R.L. Chen, C. Spanos\",\"doi\":\"10.1109/IFIS.1993.324224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic algorithm is proposed to design a fuzzy inference system through statistical data pre-processing. This approach is appropriate in modeling the qualitative aspects of a semiconductor manufacturing process, when extensive training data are often limited or difficult to collect due to the high cost of conducting experiments. With the limited number of data sets from a designed experiment, our system employs a proper statistical analysis to extract simple fuzzy inference rules of input-output relationships and initialize the corresponding membership functions. The output process variable can be continuous or categorical, and the fuzzy system can be further tuned to accommodate newly acquired experimental data.<<ETX>>\",\"PeriodicalId\":408138,\"journal\":{\"name\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFIS.1993.324224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFIS.1993.324224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种通过统计数据预处理来设计模糊推理系统的系统算法。这种方法适用于对半导体制造过程的定性方面进行建模,因为由于进行实验的高成本,大量的训练数据通常是有限的或难以收集的。在设计实验的数据集数量有限的情况下,我们的系统采用适当的统计分析来提取输入输出关系的简单模糊推理规则并初始化相应的隶属函数。输出过程变量可以是连续的或分类的,并且模糊系统可以进一步调整以适应新获得的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical data pre-processing for fuzzy modeling of semiconductor manufacturing process
A systematic algorithm is proposed to design a fuzzy inference system through statistical data pre-processing. This approach is appropriate in modeling the qualitative aspects of a semiconductor manufacturing process, when extensive training data are often limited or difficult to collect due to the high cost of conducting experiments. With the limited number of data sets from a designed experiment, our system employs a proper statistical analysis to extract simple fuzzy inference rules of input-output relationships and initialize the corresponding membership functions. The output process variable can be continuous or categorical, and the fuzzy system can be further tuned to accommodate newly acquired experimental data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信