基于自主计算的服务自优化算法

R. Zheng, Mingchuan Zhang, Qingtao Wu, Guanfeng Li, Wangyang Wei
{"title":"基于自主计算的服务自优化算法","authors":"R. Zheng, Mingchuan Zhang, Qingtao Wu, Guanfeng Li, Wangyang Wei","doi":"10.1109/GRC.2009.5255010","DOIUrl":null,"url":null,"abstract":"Under the intrusion or abnormal attack, how to autonomously supply undegraded service to users is the ultimate goal of network securiy technology. Firstly, combined with martingale difference principle, a Service Self Optimization Algorithm based on Autonomic Computing-S2OAC is proposed. Secondly, according to the prior self optimizing knowledge and parameter information of inner environment, S2OAC searches the convergence trend of self optimizing function and executes the dynamic self optimization, aiming at minimum the optimization mode rate and maximum the service performance. Thirdly, set of the best optimization mode is updated and prediction model is renewed, which will implement the static self optimization and improve the accuricy of self optimization prediction. At last, the simulation results validate the efficiency and superiority of S2OAC.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Service Self-Optimization Algorithm based on Autonomic Computing\",\"authors\":\"R. Zheng, Mingchuan Zhang, Qingtao Wu, Guanfeng Li, Wangyang Wei\",\"doi\":\"10.1109/GRC.2009.5255010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the intrusion or abnormal attack, how to autonomously supply undegraded service to users is the ultimate goal of network securiy technology. Firstly, combined with martingale difference principle, a Service Self Optimization Algorithm based on Autonomic Computing-S2OAC is proposed. Secondly, according to the prior self optimizing knowledge and parameter information of inner environment, S2OAC searches the convergence trend of self optimizing function and executes the dynamic self optimization, aiming at minimum the optimization mode rate and maximum the service performance. Thirdly, set of the best optimization mode is updated and prediction model is renewed, which will implement the static self optimization and improve the accuricy of self optimization prediction. At last, the simulation results validate the efficiency and superiority of S2OAC.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在入侵或异常攻击下,如何自主地向用户提供不降级的服务是网络安全技术的终极目标。首先,结合鞅差分原理,提出了一种基于自主计算的服务自优化算法- s2oac。其次,S2OAC根据先验的自优化知识和内部环境的参数信息,搜索自优化函数的收敛趋势,执行动态自优化,以优化模式率最小,服务性能最大为目标;再次,更新最优优化模式集,更新预测模型,实现静态自优化,提高自优化预测的精度;最后,仿真结果验证了S2OAC的效率和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Service Self-Optimization Algorithm based on Autonomic Computing
Under the intrusion or abnormal attack, how to autonomously supply undegraded service to users is the ultimate goal of network securiy technology. Firstly, combined with martingale difference principle, a Service Self Optimization Algorithm based on Autonomic Computing-S2OAC is proposed. Secondly, according to the prior self optimizing knowledge and parameter information of inner environment, S2OAC searches the convergence trend of self optimizing function and executes the dynamic self optimization, aiming at minimum the optimization mode rate and maximum the service performance. Thirdly, set of the best optimization mode is updated and prediction model is renewed, which will implement the static self optimization and improve the accuricy of self optimization prediction. At last, the simulation results validate the efficiency and superiority of S2OAC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信