{"title":"基于多智能体的自适应协同交通信号配时系统","authors":"Behnam Torabi, R. Wenkstern, Robert Saylor","doi":"10.1109/ISC2.2018.8656659","DOIUrl":null,"url":null,"abstract":"In this paper, we present DALI, a self-adaptive, collaborative multi-agent Traffic Signal Timing system (TST). Intersection controller agents collaborate with one another and adapt their timing plans based on the traffic conditions. Reinforcement learning is used to optimize values for the various thresholds necessary to dynamically determine the scope of collaboration between the agents. DALI was implement in MATISSE 3.0, a large-scale agent-based micro-simulator. Experimental results show an improvement over traditional and reinforcement learning TSTs.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Self-Adaptive Collaborative Multi-Agent based Traffic Signal Timing System\",\"authors\":\"Behnam Torabi, R. Wenkstern, Robert Saylor\",\"doi\":\"10.1109/ISC2.2018.8656659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present DALI, a self-adaptive, collaborative multi-agent Traffic Signal Timing system (TST). Intersection controller agents collaborate with one another and adapt their timing plans based on the traffic conditions. Reinforcement learning is used to optimize values for the various thresholds necessary to dynamically determine the scope of collaboration between the agents. DALI was implement in MATISSE 3.0, a large-scale agent-based micro-simulator. Experimental results show an improvement over traditional and reinforcement learning TSTs.\",\"PeriodicalId\":344652,\"journal\":{\"name\":\"2018 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC2.2018.8656659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Self-Adaptive Collaborative Multi-Agent based Traffic Signal Timing System
In this paper, we present DALI, a self-adaptive, collaborative multi-agent Traffic Signal Timing system (TST). Intersection controller agents collaborate with one another and adapt their timing plans based on the traffic conditions. Reinforcement learning is used to optimize values for the various thresholds necessary to dynamically determine the scope of collaboration between the agents. DALI was implement in MATISSE 3.0, a large-scale agent-based micro-simulator. Experimental results show an improvement over traditional and reinforcement learning TSTs.