基于优化Karhunen-Loeve展开的非平稳信号去噪

B. Aysin, Luis F. Chaparro, I. Grave, V. Shusterman
{"title":"基于优化Karhunen-Loeve展开的非平稳信号去噪","authors":"B. Aysin, Luis F. Chaparro, I. Grave, V. Shusterman","doi":"10.1109/TFSA.1998.721501","DOIUrl":null,"url":null,"abstract":"We show that denoising a non-stationary signal is possible by means of a Karhunen-Loeve (KL) expansion optimized by an entropy criterion. This criterion is used to segment the noisy signal and to choose the most parsimonious KL representation possible for each segment. The entropy of the KL coefficients for different window lengths determines the appropriate number and the lengths of the windows. To find the KL coefficients in each segment, a time-varying autocorrelation matrix is estimated using the evolutionary periodogram. Eigenvalues and eigenvectors needed in the expansion are computed from this matrix. The local eigenvectors are the basis for each segment. An estimate of the evolutionary spectrum of the signal is obtained from the KL expansion. Choosing the KL coefficients corresponding to the most significant eigenvalues and time-windowing are shown to constitute masking in the time-frequency plane. This masking permits the denoising of non-stationary signals corrupted by white noise.","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Denoising of non-stationary signals using optimized Karhunen-Loeve expansion\",\"authors\":\"B. Aysin, Luis F. Chaparro, I. Grave, V. Shusterman\",\"doi\":\"10.1109/TFSA.1998.721501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that denoising a non-stationary signal is possible by means of a Karhunen-Loeve (KL) expansion optimized by an entropy criterion. This criterion is used to segment the noisy signal and to choose the most parsimonious KL representation possible for each segment. The entropy of the KL coefficients for different window lengths determines the appropriate number and the lengths of the windows. To find the KL coefficients in each segment, a time-varying autocorrelation matrix is estimated using the evolutionary periodogram. Eigenvalues and eigenvectors needed in the expansion are computed from this matrix. The local eigenvectors are the basis for each segment. An estimate of the evolutionary spectrum of the signal is obtained from the KL expansion. Choosing the KL coefficients corresponding to the most significant eigenvalues and time-windowing are shown to constitute masking in the time-frequency plane. This masking permits the denoising of non-stationary signals corrupted by white noise.\",\"PeriodicalId\":395542,\"journal\":{\"name\":\"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1998.721501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了通过熵准则优化的Karhunen-Loeve (KL)展开可以对非平稳信号进行去噪。该准则用于分割噪声信号,并为每个片段选择最简洁的KL表示。不同窗长下KL系数的熵决定了合适的窗数和窗长。为了找到每一段的KL系数,使用进化周期图估计时变自相关矩阵。展开所需的特征值和特征向量由该矩阵计算。局部特征向量是每个段的基。从KL展开得到了信号演化谱的估计。选择与最显著特征值和时间窗相对应的KL系数可以在时频平面上构成掩蔽。这种掩模允许对被白噪声破坏的非平稳信号进行去噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Denoising of non-stationary signals using optimized Karhunen-Loeve expansion
We show that denoising a non-stationary signal is possible by means of a Karhunen-Loeve (KL) expansion optimized by an entropy criterion. This criterion is used to segment the noisy signal and to choose the most parsimonious KL representation possible for each segment. The entropy of the KL coefficients for different window lengths determines the appropriate number and the lengths of the windows. To find the KL coefficients in each segment, a time-varying autocorrelation matrix is estimated using the evolutionary periodogram. Eigenvalues and eigenvectors needed in the expansion are computed from this matrix. The local eigenvectors are the basis for each segment. An estimate of the evolutionary spectrum of the signal is obtained from the KL expansion. Choosing the KL coefficients corresponding to the most significant eigenvalues and time-windowing are shown to constitute masking in the time-frequency plane. This masking permits the denoising of non-stationary signals corrupted by white noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信