{"title":"带旋转关节的平面n杆机构运动规划","authors":"J. Trinkle, R. Milgram","doi":"10.1109/IROS.2001.977208","DOIUrl":null,"url":null,"abstract":"Maximizing the use of dual-arm robotic systems requires the development of planning algorithms analogous to those available for single-arm operations. In this paper, the global properties of the configuration spaces of planar n-bar mechanisms (i.e., kinematic chains forming a single closed loop) are used to design a complete motion planning algorithm. Numerical experiments demonstrate the algorithm's superiority over a typical algorithm that uses only local geometric information.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Motion planning for planar n-bar mechanisms with revolute joints\",\"authors\":\"J. Trinkle, R. Milgram\",\"doi\":\"10.1109/IROS.2001.977208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximizing the use of dual-arm robotic systems requires the development of planning algorithms analogous to those available for single-arm operations. In this paper, the global properties of the configuration spaces of planar n-bar mechanisms (i.e., kinematic chains forming a single closed loop) are used to design a complete motion planning algorithm. Numerical experiments demonstrate the algorithm's superiority over a typical algorithm that uses only local geometric information.\",\"PeriodicalId\":319679,\"journal\":{\"name\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2001.977208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.977208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion planning for planar n-bar mechanisms with revolute joints
Maximizing the use of dual-arm robotic systems requires the development of planning algorithms analogous to those available for single-arm operations. In this paper, the global properties of the configuration spaces of planar n-bar mechanisms (i.e., kinematic chains forming a single closed loop) are used to design a complete motion planning algorithm. Numerical experiments demonstrate the algorithm's superiority over a typical algorithm that uses only local geometric information.