一个端到端框架来识别Twitter上的致病社交媒体账户

Elham Shaabani, Ashkan Sadeghi-Mobarakeh, Hamidreza Alvari, P. Shakarian
{"title":"一个端到端框架来识别Twitter上的致病社交媒体账户","authors":"Elham Shaabani, Ashkan Sadeghi-Mobarakeh, Hamidreza Alvari, P. Shakarian","doi":"10.1109/ICDIS.2019.00027","DOIUrl":null,"url":null,"abstract":"Pathogenic Social Media (PSM) accounts such as terrorist supporter accounts and fake news writers have the capability of spreading disinformation to viral proportions. Early detection of PSM accounts is crucial as they are likely to be key users to make malicious information \"viral\". In this paper, we adopt the causal inference framework along with graph-based metrics in order to distinguish PSMs from normal users within a short time of their activities. We propose both supervised and semi-supervised approaches without taking the network information and content into account. Results on a real-world the dataset from Twitter accentuates the advantage of our proposed frameworks. We show our approach achieves 0.28 improvement in F1 score over existing approaches with the precision of 0.90 and F1 score of 0.63.","PeriodicalId":181673,"journal":{"name":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An End-to-End Framework to Identify Pathogenic Social Media Accounts on Twitter\",\"authors\":\"Elham Shaabani, Ashkan Sadeghi-Mobarakeh, Hamidreza Alvari, P. Shakarian\",\"doi\":\"10.1109/ICDIS.2019.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathogenic Social Media (PSM) accounts such as terrorist supporter accounts and fake news writers have the capability of spreading disinformation to viral proportions. Early detection of PSM accounts is crucial as they are likely to be key users to make malicious information \\\"viral\\\". In this paper, we adopt the causal inference framework along with graph-based metrics in order to distinguish PSMs from normal users within a short time of their activities. We propose both supervised and semi-supervised approaches without taking the network information and content into account. Results on a real-world the dataset from Twitter accentuates the advantage of our proposed frameworks. We show our approach achieves 0.28 improvement in F1 score over existing approaches with the precision of 0.90 and F1 score of 0.63.\",\"PeriodicalId\":181673,\"journal\":{\"name\":\"2019 2nd International Conference on Data Intelligence and Security (ICDIS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Data Intelligence and Security (ICDIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIS.2019.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIS.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

恐怖分子支持者账户和假新闻作者等致病性社交媒体账户具有将虚假信息传播到病毒式传播的能力。PSM账户的早期检测至关重要,因为它们很可能是恶意信息“病毒式传播”的关键用户。在本文中,我们采用因果推理框架以及基于图形的指标,以便在短时间内将psm与正常用户区分开来。我们提出了监督和半监督两种方法,但不考虑网络信息和内容。在真实世界的Twitter数据集上的结果强调了我们提出的框架的优势。我们表明,我们的方法比现有方法的F1分数提高了0.28,精度为0.90,F1分数为0.63。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An End-to-End Framework to Identify Pathogenic Social Media Accounts on Twitter
Pathogenic Social Media (PSM) accounts such as terrorist supporter accounts and fake news writers have the capability of spreading disinformation to viral proportions. Early detection of PSM accounts is crucial as they are likely to be key users to make malicious information "viral". In this paper, we adopt the causal inference framework along with graph-based metrics in order to distinguish PSMs from normal users within a short time of their activities. We propose both supervised and semi-supervised approaches without taking the network information and content into account. Results on a real-world the dataset from Twitter accentuates the advantage of our proposed frameworks. We show our approach achieves 0.28 improvement in F1 score over existing approaches with the precision of 0.90 and F1 score of 0.63.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信