{"title":"压裂过程中水平井固井界面破坏长度研究","authors":"Hongjun Lu, Xuesheng Wu, H. Meng, W. Xie","doi":"10.3968/10410","DOIUrl":null,"url":null,"abstract":"The cementing interface of oil and gas wells is often the weak link between oil and gas turbulence. Due to the low cementation strength at the fracturing interface, the two interfaces have been crushed to form turbulence channels before the target layer is opened during fracturing. If the closure is not good, there will be inter-layer channeling. Therefore, the pressure bearing capacity of the fracturing interface is an important indicator for designing the fracturing construction parameters. The pressure capacity of the two interfaces during the fracturing process is the key to evaluating the success of the fracturing construction. This paper establishes the calculation model for the stress distribution of horizontal wells in horizontal wells under the effect of non-uniform stress. At the same time, the influence of the pressure change in the wellbore during the fracturing process on the stress distribution in the borehole wall was analyzed. The calculation model of the interfacial stress distribution in the horizontal well during the fracturing process was established, and the debonding pressure and debonding length of the two interfaces under different cementing strengths were calculated. After the establishment of the horizontal well fracturing two interface crack propagation mechanics model, calculate the pressure required for cracks along the two interfaces to expand at different failure lengths.","PeriodicalId":313367,"journal":{"name":"Advances in Petroleum Exploration and Development","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Failure Length of Cementing Interface in Horizontal Wells During Fracturing\",\"authors\":\"Hongjun Lu, Xuesheng Wu, H. Meng, W. Xie\",\"doi\":\"10.3968/10410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cementing interface of oil and gas wells is often the weak link between oil and gas turbulence. Due to the low cementation strength at the fracturing interface, the two interfaces have been crushed to form turbulence channels before the target layer is opened during fracturing. If the closure is not good, there will be inter-layer channeling. Therefore, the pressure bearing capacity of the fracturing interface is an important indicator for designing the fracturing construction parameters. The pressure capacity of the two interfaces during the fracturing process is the key to evaluating the success of the fracturing construction. This paper establishes the calculation model for the stress distribution of horizontal wells in horizontal wells under the effect of non-uniform stress. At the same time, the influence of the pressure change in the wellbore during the fracturing process on the stress distribution in the borehole wall was analyzed. The calculation model of the interfacial stress distribution in the horizontal well during the fracturing process was established, and the debonding pressure and debonding length of the two interfaces under different cementing strengths were calculated. After the establishment of the horizontal well fracturing two interface crack propagation mechanics model, calculate the pressure required for cracks along the two interfaces to expand at different failure lengths.\",\"PeriodicalId\":313367,\"journal\":{\"name\":\"Advances in Petroleum Exploration and Development\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Petroleum Exploration and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3968/10410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Petroleum Exploration and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/10410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Failure Length of Cementing Interface in Horizontal Wells During Fracturing
The cementing interface of oil and gas wells is often the weak link between oil and gas turbulence. Due to the low cementation strength at the fracturing interface, the two interfaces have been crushed to form turbulence channels before the target layer is opened during fracturing. If the closure is not good, there will be inter-layer channeling. Therefore, the pressure bearing capacity of the fracturing interface is an important indicator for designing the fracturing construction parameters. The pressure capacity of the two interfaces during the fracturing process is the key to evaluating the success of the fracturing construction. This paper establishes the calculation model for the stress distribution of horizontal wells in horizontal wells under the effect of non-uniform stress. At the same time, the influence of the pressure change in the wellbore during the fracturing process on the stress distribution in the borehole wall was analyzed. The calculation model of the interfacial stress distribution in the horizontal well during the fracturing process was established, and the debonding pressure and debonding length of the two interfaces under different cementing strengths were calculated. After the establishment of the horizontal well fracturing two interface crack propagation mechanics model, calculate the pressure required for cracks along the two interfaces to expand at different failure lengths.