Gaurav R. Bagwe, Jian Li, Xiaoheng Deng, Xiaoyong Yuan, Lan Zhang
{"title":"海报:通过多模态强化学习实现可靠的入口匝道合并","authors":"Gaurav R. Bagwe, Jian Li, Xiaoheng Deng, Xiaoyong Yuan, Lan Zhang","doi":"10.1109/SEC54971.2022.00043","DOIUrl":null,"url":null,"abstract":"The recent success of Artificial Intelligence (AI) has enabled autonomous driving with better perception capabilities. However, on-ramp merging remains one of the main challenging scenarios for reliable autonomous driving. Within the limited onboard sensing range, a merging vehicle can hardly observe and predict the main road conditions properly, restricting appropriate merging maneuvers. In this poster, we outline ongoing research ideas for reliable and autonomous on-ramp merging assisted by vehicular communications. By jointly leveraging the basic safety messages (BSM) from neighboring vehicles and the surveillance images, a merging vehicle can perform reliable driving via robust multimodal reinforcement learning. Some experimental results are provided to evaluate our idea under the Simulation of Urban MObility (SUMO) platform.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Reliable On-Ramp Merging via Multimodal Reinforcement Learning\",\"authors\":\"Gaurav R. Bagwe, Jian Li, Xiaoheng Deng, Xiaoyong Yuan, Lan Zhang\",\"doi\":\"10.1109/SEC54971.2022.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent success of Artificial Intelligence (AI) has enabled autonomous driving with better perception capabilities. However, on-ramp merging remains one of the main challenging scenarios for reliable autonomous driving. Within the limited onboard sensing range, a merging vehicle can hardly observe and predict the main road conditions properly, restricting appropriate merging maneuvers. In this poster, we outline ongoing research ideas for reliable and autonomous on-ramp merging assisted by vehicular communications. By jointly leveraging the basic safety messages (BSM) from neighboring vehicles and the surveillance images, a merging vehicle can perform reliable driving via robust multimodal reinforcement learning. Some experimental results are provided to evaluate our idea under the Simulation of Urban MObility (SUMO) platform.\",\"PeriodicalId\":364062,\"journal\":{\"name\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC54971.2022.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poster: Reliable On-Ramp Merging via Multimodal Reinforcement Learning
The recent success of Artificial Intelligence (AI) has enabled autonomous driving with better perception capabilities. However, on-ramp merging remains one of the main challenging scenarios for reliable autonomous driving. Within the limited onboard sensing range, a merging vehicle can hardly observe and predict the main road conditions properly, restricting appropriate merging maneuvers. In this poster, we outline ongoing research ideas for reliable and autonomous on-ramp merging assisted by vehicular communications. By jointly leveraging the basic safety messages (BSM) from neighboring vehicles and the surveillance images, a merging vehicle can perform reliable driving via robust multimodal reinforcement learning. Some experimental results are provided to evaluate our idea under the Simulation of Urban MObility (SUMO) platform.