基于运动冗余的信号和数据信息的最优机器人控制器

Yair Casas Flores, C. Treesatayapun
{"title":"基于运动冗余的信号和数据信息的最优机器人控制器","authors":"Yair Casas Flores, C. Treesatayapun","doi":"10.1109/IECON48115.2021.9589750","DOIUrl":null,"url":null,"abstract":"A kinematic redundancy robot is considered as a class of unknown nonlinear discrete-time systems. The compact form dynamic linearization is firstly utilized to establish the equivalent model of the robotic system. Thereafter, the adaptive controller is derived by fuzzy rules emulated network while the learning law is designed to minimize both the tracking error and the control effort energy with the stability analysis. The experimental system is constructed to validate the performance of closed-loop systems.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal robotic controller based on signals and data information with kinematic redundancy\",\"authors\":\"Yair Casas Flores, C. Treesatayapun\",\"doi\":\"10.1109/IECON48115.2021.9589750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A kinematic redundancy robot is considered as a class of unknown nonlinear discrete-time systems. The compact form dynamic linearization is firstly utilized to establish the equivalent model of the robotic system. Thereafter, the adaptive controller is derived by fuzzy rules emulated network while the learning law is designed to minimize both the tracking error and the control effort energy with the stability analysis. The experimental system is constructed to validate the performance of closed-loop systems.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将运动冗余机器人视为一类未知的非线性离散系统。首先利用紧凑形式的动态线性化方法建立机器人系统的等效模型。然后,利用模糊规则仿真网络推导出自适应控制器,同时设计学习律,通过稳定性分析使跟踪误差和控制努力能量最小化。为了验证闭环系统的性能,建立了实验系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal robotic controller based on signals and data information with kinematic redundancy
A kinematic redundancy robot is considered as a class of unknown nonlinear discrete-time systems. The compact form dynamic linearization is firstly utilized to establish the equivalent model of the robotic system. Thereafter, the adaptive controller is derived by fuzzy rules emulated network while the learning law is designed to minimize both the tracking error and the control effort energy with the stability analysis. The experimental system is constructed to validate the performance of closed-loop systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信