{"title":"数据深度:鲁棒多元分析、计算几何及其应用,中国计算机科学与技术研讨会论文集,2003年5月14-16日,美国","authors":"Regina Y. Liu, R. Serfling, D. Souvaine","doi":"10.1090/DIMACS/072","DOIUrl":null,"url":null,"abstract":"Depth functions in nonparametric multivariate inference by R. Serfling Rank tests for multivariate scale difference based on data depth by R. Y. Liu and K. Singh On scale curves for nonparametric description of dispersion by J. Wang and R. Serfling Data analysis and classification with the zonoid depth by K. Mosler and R. Hoberg On some parametric, nonparametric and semiparametric discrimination rules by A. Hartikainen and H. Oja Regression depth and support vector machine by A. Christmann Spherical data depth and a multivariate median by R. T. Elmore, T. P. Hettmansperger, and F. Xuan Depth-based classification for functional data by S. Lopez-Pintado and J. Romo Impartial trimmed means for functional data by J. A. Cuesta-Albertos and R. Fraiman Geometric measures of data depth by G. Aloupis Computation of half-space depth using simulated annealing by B. Chakraborty and P. Chaudhuri Primaldual algorithms for data depth by D. Bremner, K. Fukuda, and V. Rosta Simplicial depth: An improved definition, analysis, and efficiency for the finite sample case by M. A. Burr, E. Rafalin, and D. L. Souvaine Fast algorithms for frames and point depth by J. H. Dula Statistical data depth and the graphics hardware by S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian.","PeriodicalId":161658,"journal":{"name":"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 14-16, 2003\",\"authors\":\"Regina Y. Liu, R. Serfling, D. Souvaine\",\"doi\":\"10.1090/DIMACS/072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth functions in nonparametric multivariate inference by R. Serfling Rank tests for multivariate scale difference based on data depth by R. Y. Liu and K. Singh On scale curves for nonparametric description of dispersion by J. Wang and R. Serfling Data analysis and classification with the zonoid depth by K. Mosler and R. Hoberg On some parametric, nonparametric and semiparametric discrimination rules by A. Hartikainen and H. Oja Regression depth and support vector machine by A. Christmann Spherical data depth and a multivariate median by R. T. Elmore, T. P. Hettmansperger, and F. Xuan Depth-based classification for functional data by S. Lopez-Pintado and J. Romo Impartial trimmed means for functional data by J. A. Cuesta-Albertos and R. Fraiman Geometric measures of data depth by G. Aloupis Computation of half-space depth using simulated annealing by B. Chakraborty and P. Chaudhuri Primaldual algorithms for data depth by D. Bremner, K. Fukuda, and V. Rosta Simplicial depth: An improved definition, analysis, and efficiency for the finite sample case by M. A. Burr, E. Rafalin, and D. L. Souvaine Fast algorithms for frames and point depth by J. H. Dula Statistical data depth and the graphics hardware by S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian.\",\"PeriodicalId\":161658,\"journal\":{\"name\":\"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/DIMACS/072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/DIMACS/072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67
摘要
R. Serfling非参数多元推理中的深度函数R. Y. Liu和K. Singh基于数据深度的多元尺度差异秩检验J. Wang和R. Serfling基于非参数描述色散的尺度曲线K. Mosler和R. Hoberg基于分区深度的数据分析和分类a . Christmann的回归深度和支持向量机(R. T. Elmore, T. P. Hettmansperger)的球面数据深度和多元中值;J. A. custa - albertos和R. Fraiman对功能数据的公正裁剪方法G. Aloupis对数据深度的几何度量B. Chakraborty和P. Chaudhuri利用模拟退火计算半空间深度D. Bremner、K. Fukuda和V. Rosta对数据深度的原始算法:基于帧和点深度的快速算法(J. H. Dula)统计数据深度和图形硬件(S. Krishnan、N. H. Mustafa和S. Venkatasubramanian)。
Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 14-16, 2003
Depth functions in nonparametric multivariate inference by R. Serfling Rank tests for multivariate scale difference based on data depth by R. Y. Liu and K. Singh On scale curves for nonparametric description of dispersion by J. Wang and R. Serfling Data analysis and classification with the zonoid depth by K. Mosler and R. Hoberg On some parametric, nonparametric and semiparametric discrimination rules by A. Hartikainen and H. Oja Regression depth and support vector machine by A. Christmann Spherical data depth and a multivariate median by R. T. Elmore, T. P. Hettmansperger, and F. Xuan Depth-based classification for functional data by S. Lopez-Pintado and J. Romo Impartial trimmed means for functional data by J. A. Cuesta-Albertos and R. Fraiman Geometric measures of data depth by G. Aloupis Computation of half-space depth using simulated annealing by B. Chakraborty and P. Chaudhuri Primaldual algorithms for data depth by D. Bremner, K. Fukuda, and V. Rosta Simplicial depth: An improved definition, analysis, and efficiency for the finite sample case by M. A. Burr, E. Rafalin, and D. L. Souvaine Fast algorithms for frames and point depth by J. H. Dula Statistical data depth and the graphics hardware by S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian.