关于选择一个令人满意的真值赋值

C. Papadimitriou
{"title":"关于选择一个令人满意的真值赋值","authors":"C. Papadimitriou","doi":"10.1109/SFCS.1991.185365","DOIUrl":null,"url":null,"abstract":"The complexity of certain natural generalizations of satisfiability, in which one of the possibly exponentially many satisfying truth assignments must be selected, is studied. Two natural selection criteria, default preference and minimality (circumscription), are considered. The thrust of the complexity results seems to be that hard problems become harder, while easy problems remain easy. This consideration yields as a byproduct a new and very natural polynomial-time randomized algorithm for 2SAT.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"299","resultStr":"{\"title\":\"On selecting a satisfying truth assignment\",\"authors\":\"C. Papadimitriou\",\"doi\":\"10.1109/SFCS.1991.185365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of certain natural generalizations of satisfiability, in which one of the possibly exponentially many satisfying truth assignments must be selected, is studied. Two natural selection criteria, default preference and minimality (circumscription), are considered. The thrust of the complexity results seems to be that hard problems become harder, while easy problems remain easy. This consideration yields as a byproduct a new and very natural polynomial-time randomized algorithm for 2SAT.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"299\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 299

摘要

研究了满足性自然推广的复杂性,在这种推广中,必须从可能的指数级的许多令人满意的真值分配中选择一个。两个自然选择标准,默认偏好和最小(限制),被考虑。复杂性结果的主旨似乎是,困难的问题变得更加困难,而简单的问题仍然简单。这种考虑产生了一种新的、非常自然的2SAT多项式时间随机化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On selecting a satisfying truth assignment
The complexity of certain natural generalizations of satisfiability, in which one of the possibly exponentially many satisfying truth assignments must be selected, is studied. Two natural selection criteria, default preference and minimality (circumscription), are considered. The thrust of the complexity results seems to be that hard problems become harder, while easy problems remain easy. This consideration yields as a byproduct a new and very natural polynomial-time randomized algorithm for 2SAT.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信