利用IAcM识别广义STAR模型的平稳性

U. Mukhaiyar, U. S. Pasaribu
{"title":"利用IAcM识别广义STAR模型的平稳性","authors":"U. Mukhaiyar, U. S. Pasaribu","doi":"10.1109/CCSII.2012.6470511","DOIUrl":null,"url":null,"abstract":"A new approach of identifying stationarity of the space-time processes through the Invers of Autocovariance Matrix (IAcM) is proposed. In particular, we consider the first order Generalized Space Time Autoregressive (GSTAR(1;1)) model. This model is considered to be more representative model in space-time modeling due to its realistic assumption on the uniqueness of spatial location. We are exploring the behavior of the IAcM on behalf of the process stationarity. The stationary condition is a must for GSTAR process to be able to apply in space-time modeling. We obtain that the IAcM may be stated as the function of autoregressive parameters and weight spatial. For the confirmation we carry out numerical analysis for various autoregressive parameter matrices and weight matrices. Through some simulations, we illustrate how significant the autoregressive parameters and weight spatial matrices influence the behavior of the IAcM.","PeriodicalId":389895,"journal":{"name":"2012 IEEE Conference on Control, Systems & Industrial Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The use of IAcM to identify stationarity of the generalized STAR models\",\"authors\":\"U. Mukhaiyar, U. S. Pasaribu\",\"doi\":\"10.1109/CCSII.2012.6470511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach of identifying stationarity of the space-time processes through the Invers of Autocovariance Matrix (IAcM) is proposed. In particular, we consider the first order Generalized Space Time Autoregressive (GSTAR(1;1)) model. This model is considered to be more representative model in space-time modeling due to its realistic assumption on the uniqueness of spatial location. We are exploring the behavior of the IAcM on behalf of the process stationarity. The stationary condition is a must for GSTAR process to be able to apply in space-time modeling. We obtain that the IAcM may be stated as the function of autoregressive parameters and weight spatial. For the confirmation we carry out numerical analysis for various autoregressive parameter matrices and weight matrices. Through some simulations, we illustrate how significant the autoregressive parameters and weight spatial matrices influence the behavior of the IAcM.\",\"PeriodicalId\":389895,\"journal\":{\"name\":\"2012 IEEE Conference on Control, Systems & Industrial Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Control, Systems & Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCSII.2012.6470511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Control, Systems & Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSII.2012.6470511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种利用自协方差矩阵逆识别时空过程平稳性的新方法。特别地,我们考虑了一阶广义时空自回归(GSTAR(1;1))模型。该模型对空间位置唯一性的假设较为现实,被认为是时空建模中较具代表性的模型。我们正在探索IAcM代表过程平稳性的行为。平稳条件是GSTAR过程能够应用于时空建模的必要条件。我们得到了IAcM可以表示为自回归参数和权重空间的函数。为了证实这一点,我们对各种自回归参数矩阵和权重矩阵进行了数值分析。通过一些模拟,我们说明了自回归参数和权重空间矩阵对IAcM行为的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of IAcM to identify stationarity of the generalized STAR models
A new approach of identifying stationarity of the space-time processes through the Invers of Autocovariance Matrix (IAcM) is proposed. In particular, we consider the first order Generalized Space Time Autoregressive (GSTAR(1;1)) model. This model is considered to be more representative model in space-time modeling due to its realistic assumption on the uniqueness of spatial location. We are exploring the behavior of the IAcM on behalf of the process stationarity. The stationary condition is a must for GSTAR process to be able to apply in space-time modeling. We obtain that the IAcM may be stated as the function of autoregressive parameters and weight spatial. For the confirmation we carry out numerical analysis for various autoregressive parameter matrices and weight matrices. Through some simulations, we illustrate how significant the autoregressive parameters and weight spatial matrices influence the behavior of the IAcM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信