基于PCA的自适应期望最大化鲁棒图像配准

P. Reel, L. Dooley, Kam Cheung Patrick Wong, A. Börner
{"title":"基于PCA的自适应期望最大化鲁棒图像配准","authors":"P. Reel, L. Dooley, Kam Cheung Patrick Wong, A. Börner","doi":"10.1109/VCIP.2014.7051515","DOIUrl":null,"url":null,"abstract":"Images having either the same or different modalities can be aligned using the systematic process of image registration. Inherent image characteristics including intensity non-uniformities in magnetic resonance images and large homogeneous non-vascular regions in retinal and other generic image types however, pose a significant challenge to their registration. This paper presents an adaptive expectation maximisation for principal component analysis with mutual information (aEMPCA-MI) similarity measure for image registration. It introduces a novel iterative process to adaptively select the most significant principal components using Kaiser rule and applies 4-pixel connectivity for feature extraction together with Wichard's bin size selection in calculating the MI. Both quantitative and qualitative results on a diverse range of image datasets, conclusively demonstrate the superior image registration performance of aEMPCA-MI compared with existing Mi-based similarity measures.","PeriodicalId":166978,"journal":{"name":"2014 IEEE Visual Communications and Image Processing Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust image registration using adaptive expectation maximisation based PCA\",\"authors\":\"P. Reel, L. Dooley, Kam Cheung Patrick Wong, A. Börner\",\"doi\":\"10.1109/VCIP.2014.7051515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images having either the same or different modalities can be aligned using the systematic process of image registration. Inherent image characteristics including intensity non-uniformities in magnetic resonance images and large homogeneous non-vascular regions in retinal and other generic image types however, pose a significant challenge to their registration. This paper presents an adaptive expectation maximisation for principal component analysis with mutual information (aEMPCA-MI) similarity measure for image registration. It introduces a novel iterative process to adaptively select the most significant principal components using Kaiser rule and applies 4-pixel connectivity for feature extraction together with Wichard's bin size selection in calculating the MI. Both quantitative and qualitative results on a diverse range of image datasets, conclusively demonstrate the superior image registration performance of aEMPCA-MI compared with existing Mi-based similarity measures.\",\"PeriodicalId\":166978,\"journal\":{\"name\":\"2014 IEEE Visual Communications and Image Processing Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Visual Communications and Image Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2014.7051515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Visual Communications and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2014.7051515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有相同或不同模态的图像可以使用图像配准的系统过程进行对齐。然而,固有的图像特征,包括磁共振图像的强度不均匀性和视网膜和其他一般图像类型的大均匀非血管区域,对它们的配准提出了重大挑战。本文提出了一种基于互信息相似性度量的自适应期望最大化主成分分析方法。它引入了一种新颖的迭代过程,使用Kaiser规则自适应地选择最重要的主成分,并在计算MI时应用4像素连通性进行特征提取,同时使用Wichard的bin大小选择。在各种图像数据集上的定量和定性结果都最终证明了与现有基于MI的相似性度量相比,aEMPCA-MI具有优越的图像配准性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust image registration using adaptive expectation maximisation based PCA
Images having either the same or different modalities can be aligned using the systematic process of image registration. Inherent image characteristics including intensity non-uniformities in magnetic resonance images and large homogeneous non-vascular regions in retinal and other generic image types however, pose a significant challenge to their registration. This paper presents an adaptive expectation maximisation for principal component analysis with mutual information (aEMPCA-MI) similarity measure for image registration. It introduces a novel iterative process to adaptively select the most significant principal components using Kaiser rule and applies 4-pixel connectivity for feature extraction together with Wichard's bin size selection in calculating the MI. Both quantitative and qualitative results on a diverse range of image datasets, conclusively demonstrate the superior image registration performance of aEMPCA-MI compared with existing Mi-based similarity measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信