随机字符串产生硬实例

H. Buhrman, P. Orponen
{"title":"随机字符串产生硬实例","authors":"H. Buhrman, P. Orponen","doi":"10.1109/SCT.1994.315802","DOIUrl":null,"url":null,"abstract":"We establish the truth of the \"instance complexity conjecture\" in the case of DEXT-complete sets w.r.t. polynomial time computations, and r.e. complete sets w.r.t. recursive computations. Specifically, we obtain for every DEXT-complete set A an exponentially dense subset C such that for every nondecreasing polynomial t(n)=/spl omega/(n log n), ic/sup t/(x:A)/spl ges/K/sup t/(x)-c holds for some constant c and all x/spl isin/C, where ic/sup t/ and K/sup t/ are the t-bounded instance complexity and Kolmogorov complexity measures, respectively. For r.e. complete sets A we obtain an infinite set C/spl sube/A~ such that ic/sup /spl infin(x:A)/spl ges/K/sup /spl infin(x)-c holds for some constant c and all x/spl isin/C. The proofs are based on the observation that Kolmogorov random strings are individually hard to recognize by bounded computations.<<ETX>>","PeriodicalId":386782,"journal":{"name":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Random strings make hard instances\",\"authors\":\"H. Buhrman, P. Orponen\",\"doi\":\"10.1109/SCT.1994.315802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the truth of the \\\"instance complexity conjecture\\\" in the case of DEXT-complete sets w.r.t. polynomial time computations, and r.e. complete sets w.r.t. recursive computations. Specifically, we obtain for every DEXT-complete set A an exponentially dense subset C such that for every nondecreasing polynomial t(n)=/spl omega/(n log n), ic/sup t/(x:A)/spl ges/K/sup t/(x)-c holds for some constant c and all x/spl isin/C, where ic/sup t/ and K/sup t/ are the t-bounded instance complexity and Kolmogorov complexity measures, respectively. For r.e. complete sets A we obtain an infinite set C/spl sube/A~ such that ic/sup /spl infin(x:A)/spl ges/K/sup /spl infin(x)-c holds for some constant c and all x/spl isin/C. The proofs are based on the observation that Kolmogorov random strings are individually hard to recognize by bounded computations.<<ETX>>\",\"PeriodicalId\":386782,\"journal\":{\"name\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1994.315802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1994.315802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在dext完备集w.r.t.多项式时间计算和r.e.完备集w.r.t.递归计算的情况下,证明了“实例复杂度猜想”的成立。具体地说,我们得到了每个dext完备集A的指数密集子集C,使得对于每个非递减多项式t(n)=/spl ω /(n log n), ic/sup t/(x:A)/spl ges/K/sup t/(x)-c对于某些常数C和所有x/spl isin/C成立,其中ic/sup t/和K/sup t/分别是t有界实例复杂度和Kolmogorov复杂度度量。对于r.e.完全集合A,我们得到了一个无限集C/spl sub /A~,使得ic/sup /spl infin(x:A)/spl ges/K/sup /spl infin(x)-c对某常数C和所有x/spl isin/C成立。这些证明是基于观察到Kolmogorov随机字符串很难通过有界计算来识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random strings make hard instances
We establish the truth of the "instance complexity conjecture" in the case of DEXT-complete sets w.r.t. polynomial time computations, and r.e. complete sets w.r.t. recursive computations. Specifically, we obtain for every DEXT-complete set A an exponentially dense subset C such that for every nondecreasing polynomial t(n)=/spl omega/(n log n), ic/sup t/(x:A)/spl ges/K/sup t/(x)-c holds for some constant c and all x/spl isin/C, where ic/sup t/ and K/sup t/ are the t-bounded instance complexity and Kolmogorov complexity measures, respectively. For r.e. complete sets A we obtain an infinite set C/spl sube/A~ such that ic/sup /spl infin(x:A)/spl ges/K/sup /spl infin(x)-c holds for some constant c and all x/spl isin/C. The proofs are based on the observation that Kolmogorov random strings are individually hard to recognize by bounded computations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信