在内存数据库系统中实现高效的变量调用

Sebastian Dorok, S. Breß, G. Saake
{"title":"在内存数据库系统中实现高效的变量调用","authors":"Sebastian Dorok, S. Breß, G. Saake","doi":"10.1109/DEXA.2014.25","DOIUrl":null,"url":null,"abstract":"Mutations in genomes indicate predisposition for diseases or effects on efficacy of drugs. A variant calling algorithm determines possible mutations in sample genomes. Afterwards, scientists have to decide about the impact of these mutations. Certainly, many different variant calling algorithms exist that generate different outputs due to different sequence alignments as input and parameterizations of variant calling algorithms. Thus, a combination of variant calling results is necessary to provide a more complete set of mutations than single algorithm runs can provide. Therefore, a system is required that facilitates the integration and parameterization of different variant calling algorithms and processing of different sequence alignments. Moreover, against the backdrop of ever increasing amounts of available genome sequencing data, such a system must provide matured database management capabilities to enable flexible and efficient analyses while keeping data consistent. In this paper, we present a first approach to integrate variant calling into a main-memory database management system that allows for calling variants via SQL.","PeriodicalId":291899,"journal":{"name":"2014 25th International Workshop on Database and Expert Systems Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Toward Efficient Variant Calling Inside Main-Memory Database Systems\",\"authors\":\"Sebastian Dorok, S. Breß, G. Saake\",\"doi\":\"10.1109/DEXA.2014.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutations in genomes indicate predisposition for diseases or effects on efficacy of drugs. A variant calling algorithm determines possible mutations in sample genomes. Afterwards, scientists have to decide about the impact of these mutations. Certainly, many different variant calling algorithms exist that generate different outputs due to different sequence alignments as input and parameterizations of variant calling algorithms. Thus, a combination of variant calling results is necessary to provide a more complete set of mutations than single algorithm runs can provide. Therefore, a system is required that facilitates the integration and parameterization of different variant calling algorithms and processing of different sequence alignments. Moreover, against the backdrop of ever increasing amounts of available genome sequencing data, such a system must provide matured database management capabilities to enable flexible and efficient analyses while keeping data consistent. In this paper, we present a first approach to integrate variant calling into a main-memory database management system that allows for calling variants via SQL.\",\"PeriodicalId\":291899,\"journal\":{\"name\":\"2014 25th International Workshop on Database and Expert Systems Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 25th International Workshop on Database and Expert Systems Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2014.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基因组突变表明疾病易感性或对药物疗效的影响。变体调用算法确定样本基因组中可能发生的突变。之后,科学家必须确定这些突变的影响。当然,存在许多不同的变量调用算法,由于不同的序列对齐作为变量调用算法的输入和参数化而产生不同的输出。因此,变体调用结果的组合是必要的,以提供比单个算法运行所能提供的更完整的突变集。因此,需要一个系统来促进不同变量调用算法的集成和参数化,以及不同序列比对的处理。此外,在可用基因组测序数据不断增加的背景下,这样的系统必须提供成熟的数据库管理功能,以便在保持数据一致的同时实现灵活有效的分析。在本文中,我们提出了将变量调用集成到允许通过SQL调用变量的主存数据库管理系统中的第一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Efficient Variant Calling Inside Main-Memory Database Systems
Mutations in genomes indicate predisposition for diseases or effects on efficacy of drugs. A variant calling algorithm determines possible mutations in sample genomes. Afterwards, scientists have to decide about the impact of these mutations. Certainly, many different variant calling algorithms exist that generate different outputs due to different sequence alignments as input and parameterizations of variant calling algorithms. Thus, a combination of variant calling results is necessary to provide a more complete set of mutations than single algorithm runs can provide. Therefore, a system is required that facilitates the integration and parameterization of different variant calling algorithms and processing of different sequence alignments. Moreover, against the backdrop of ever increasing amounts of available genome sequencing data, such a system must provide matured database management capabilities to enable flexible and efficient analyses while keeping data consistent. In this paper, we present a first approach to integrate variant calling into a main-memory database management system that allows for calling variants via SQL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信