基于强化学习的卤化物图像处理调度优化

Marcelo Pecenin, André Murbach Maidl, Daniel Weingaertner
{"title":"基于强化学习的卤化物图像处理调度优化","authors":"Marcelo Pecenin, André Murbach Maidl, Daniel Weingaertner","doi":"10.5753/wscad.2019.8655","DOIUrl":null,"url":null,"abstract":"Writing efficient image processing code is a very demanding task and much programming effort is put into porting existing code to new generations of hardware. Besides, the definition of what is an efficient code varies according to the desired optimization target, such as runtime, energy consumption or memory usage. We present a semi-automatic schedule generation system for the Halide DSL that uses a Reinforcement Learning agent to choose a set of scheduling options that optimizes the runtime of the resulting application. We compare our results to the state of the art implementations of three Halide pipelines and show that our agent is able to surpass hand-tuned code and Halide’s auto-scheduler on most scenarios for CPU and GPU architectures.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of Halide Image Processing Schedules with Reinforcement Learning\",\"authors\":\"Marcelo Pecenin, André Murbach Maidl, Daniel Weingaertner\",\"doi\":\"10.5753/wscad.2019.8655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Writing efficient image processing code is a very demanding task and much programming effort is put into porting existing code to new generations of hardware. Besides, the definition of what is an efficient code varies according to the desired optimization target, such as runtime, energy consumption or memory usage. We present a semi-automatic schedule generation system for the Halide DSL that uses a Reinforcement Learning agent to choose a set of scheduling options that optimizes the runtime of the resulting application. We compare our results to the state of the art implementations of three Halide pipelines and show that our agent is able to surpass hand-tuned code and Halide’s auto-scheduler on most scenarios for CPU and GPU architectures.\",\"PeriodicalId\":117711,\"journal\":{\"name\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad.2019.8655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

编写高效的图像处理代码是一项非常艰巨的任务,将现有代码移植到新一代硬件上需要投入大量编程工作。此外,什么是高效代码的定义根据期望的优化目标而变化,例如运行时、能耗或内存使用。我们提出了一个用于Halide DSL的半自动调度生成系统,该系统使用强化学习代理来选择一组调度选项,以优化生成的应用程序的运行时。我们将我们的结果与三个Halide管道的最先进实现状态进行比较,并表明我们的代理能够在CPU和GPU架构的大多数场景中超越手动调优代码和Halide的自动调度器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Halide Image Processing Schedules with Reinforcement Learning
Writing efficient image processing code is a very demanding task and much programming effort is put into porting existing code to new generations of hardware. Besides, the definition of what is an efficient code varies according to the desired optimization target, such as runtime, energy consumption or memory usage. We present a semi-automatic schedule generation system for the Halide DSL that uses a Reinforcement Learning agent to choose a set of scheduling options that optimizes the runtime of the resulting application. We compare our results to the state of the art implementations of three Halide pipelines and show that our agent is able to surpass hand-tuned code and Halide’s auto-scheduler on most scenarios for CPU and GPU architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信