结合似然和Kullback-Leibler距离估计基于支持向量机的说话人验证通用背景模型

Zhenchun Lei
{"title":"结合似然和Kullback-Leibler距离估计基于支持向量机的说话人验证通用背景模型","authors":"Zhenchun Lei","doi":"10.1109/ICPR.2010.1106","DOIUrl":null,"url":null,"abstract":"The state-of-the-art methods for speaker verification are based on the support vector machine. The Gaussian supervector SVM is a typical method which uses the Gaussian mixture model for creating “feature vectors” for the discriminative SVM. And all GMMs are adapted from the same universal background model, which is got by maximum likelihood estimation on a large number of data sets. So the UBM should cover the feature space widely as possible. We propose a new method to estimate the parameters of the UBM by combining the likelihood and the Kullback-Leibler distances in the UBM. Its aim is to find the model parameters which get the high likelihood value and all Gaussian distributions are dispersed to cover the feature space in a great measuring. Experiments on NIST 2001 task show that our method can improve the performance obviously.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining the Likelihood and the Kullback-Leibler Distance in Estimating the Universal Background Model for Speaker Verification Using SVM\",\"authors\":\"Zhenchun Lei\",\"doi\":\"10.1109/ICPR.2010.1106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state-of-the-art methods for speaker verification are based on the support vector machine. The Gaussian supervector SVM is a typical method which uses the Gaussian mixture model for creating “feature vectors” for the discriminative SVM. And all GMMs are adapted from the same universal background model, which is got by maximum likelihood estimation on a large number of data sets. So the UBM should cover the feature space widely as possible. We propose a new method to estimate the parameters of the UBM by combining the likelihood and the Kullback-Leibler distances in the UBM. Its aim is to find the model parameters which get the high likelihood value and all Gaussian distributions are dispersed to cover the feature space in a great measuring. Experiments on NIST 2001 task show that our method can improve the performance obviously.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最先进的说话人验证方法是基于支持向量机的。高斯超向量支持向量机是利用高斯混合模型为判别支持向量机创建“特征向量”的一种典型方法。所有的gmm都来自同一个通用背景模型,该模型是通过对大量数据集的极大似然估计得到的。因此,UBM应该尽可能广泛地覆盖特征空间。我们提出了一种结合似然和库尔贝克-莱伯勒距离来估计模型参数的新方法。它的目的是寻找得到高似然值的模型参数,并且所有的高斯分布都是分散的,以覆盖大量的特征空间。在NIST 2001任务上的实验表明,该方法可以明显提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining the Likelihood and the Kullback-Leibler Distance in Estimating the Universal Background Model for Speaker Verification Using SVM
The state-of-the-art methods for speaker verification are based on the support vector machine. The Gaussian supervector SVM is a typical method which uses the Gaussian mixture model for creating “feature vectors” for the discriminative SVM. And all GMMs are adapted from the same universal background model, which is got by maximum likelihood estimation on a large number of data sets. So the UBM should cover the feature space widely as possible. We propose a new method to estimate the parameters of the UBM by combining the likelihood and the Kullback-Leibler distances in the UBM. Its aim is to find the model parameters which get the high likelihood value and all Gaussian distributions are dispersed to cover the feature space in a great measuring. Experiments on NIST 2001 task show that our method can improve the performance obviously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信