利用样本生长高效挖掘频繁封闭判别双聚类:FDCluster方法

Miao Wang, Xuequn Shang, Shaohua Zhang, Zhanhuai Li
{"title":"利用样本生长高效挖掘频繁封闭判别双聚类:FDCluster方法","authors":"Miao Wang, Xuequn Shang, Shaohua Zhang, Zhanhuai Li","doi":"10.4018/jkdb.2010100104","DOIUrl":null,"url":null,"abstract":"DNA microarray technology has generated a large number of gene expression data. Biclustering is a methodology allowing for condition set and gene set points clustering simultaneously. It finds clusters of genes possessing similar characteristics together with biological conditions creating these similarities. Almost all the current biclustering algorithms find bicluster in one microarray dataset. In order to reduce the noise influence and find more biological biclusters, the authors propose the FDCluster algorithm in order to mine frequent closed discriminative bicluster in multiple microarray datasets. FDCluster uses Apriori property and several novel techniques for pruning to mine biclusters efficiently. To increase the space usage, FDCluster also utilizes several techniques to generate frequent closed bicluster without candidate maintenance in memory. The experimental results show that FDCluster is more effective than traditional methods in either single micorarray dataset or multiple microarray datasets. This paper tests the biological significance using GO to show the proposed method is able to produce biologically relevant biclusters.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient Mining Frequent Closed Discriminative Biclusters by Sample-Growth: The FDCluster Approach\",\"authors\":\"Miao Wang, Xuequn Shang, Shaohua Zhang, Zhanhuai Li\",\"doi\":\"10.4018/jkdb.2010100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA microarray technology has generated a large number of gene expression data. Biclustering is a methodology allowing for condition set and gene set points clustering simultaneously. It finds clusters of genes possessing similar characteristics together with biological conditions creating these similarities. Almost all the current biclustering algorithms find bicluster in one microarray dataset. In order to reduce the noise influence and find more biological biclusters, the authors propose the FDCluster algorithm in order to mine frequent closed discriminative bicluster in multiple microarray datasets. FDCluster uses Apriori property and several novel techniques for pruning to mine biclusters efficiently. To increase the space usage, FDCluster also utilizes several techniques to generate frequent closed bicluster without candidate maintenance in memory. The experimental results show that FDCluster is more effective than traditional methods in either single micorarray dataset or multiple microarray datasets. This paper tests the biological significance using GO to show the proposed method is able to produce biologically relevant biclusters.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2010100104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2010100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

DNA微阵列技术产生了大量的基因表达数据。双聚类是一种允许条件集点和基因集点同时聚类的方法。它发现具有相似特征的基因簇以及产生这些相似性的生物条件。目前几乎所有的双聚类算法都是在一个微阵列数据集中找到双聚类的。为了降低噪声影响,发现更多的生物双聚类,作者提出了FDCluster算法来挖掘多个微阵列数据集中频繁的封闭判别双聚类。FDCluster利用Apriori属性和一些新的剪枝技术来高效地挖掘双聚类。为了增加空间使用,FDCluster还使用了几种技术来生成频繁的封闭双集群,而无需在内存中进行候选维护。实验结果表明,无论是在单个微阵列数据集还是在多个微阵列数据集上,FDCluster都比传统方法更有效。本文使用氧化石墨烯测试生物学意义,以表明所提出的方法能够产生生物学相关的双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Mining Frequent Closed Discriminative Biclusters by Sample-Growth: The FDCluster Approach
DNA microarray technology has generated a large number of gene expression data. Biclustering is a methodology allowing for condition set and gene set points clustering simultaneously. It finds clusters of genes possessing similar characteristics together with biological conditions creating these similarities. Almost all the current biclustering algorithms find bicluster in one microarray dataset. In order to reduce the noise influence and find more biological biclusters, the authors propose the FDCluster algorithm in order to mine frequent closed discriminative bicluster in multiple microarray datasets. FDCluster uses Apriori property and several novel techniques for pruning to mine biclusters efficiently. To increase the space usage, FDCluster also utilizes several techniques to generate frequent closed bicluster without candidate maintenance in memory. The experimental results show that FDCluster is more effective than traditional methods in either single micorarray dataset or multiple microarray datasets. This paper tests the biological significance using GO to show the proposed method is able to produce biologically relevant biclusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信