{"title":"赤池模型与传统光谱分析作为分析多变量临床时间序列的工具","authors":"T. Wada","doi":"10.1109/CBMSYS.1990.109444","DOIUrl":null,"url":null,"abstract":"Akaike's method of multivariate autoregressive (AR) modeling is applied to time-series analysis of clinical data. The present approach successfully demonstrated the peculiar power spectrum in various time-series data, which failed to be detected by FFT analysis because of abundant noise. Once AR coefficients are computed from the observed time-series of the relevant variables they can be used to describe the peculiar behavior of the system under study in two different ways: impulse response (IR) curves and Akaike's relative power contribution. The original program of Akaike is modified for exclusive uses in the analysis of clinical data.<<ETX>>","PeriodicalId":365366,"journal":{"name":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Akaike's model versus conventional spectral analysis as tools for analyzing multivariate clinical time series\",\"authors\":\"T. Wada\",\"doi\":\"10.1109/CBMSYS.1990.109444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Akaike's method of multivariate autoregressive (AR) modeling is applied to time-series analysis of clinical data. The present approach successfully demonstrated the peculiar power spectrum in various time-series data, which failed to be detected by FFT analysis because of abundant noise. Once AR coefficients are computed from the observed time-series of the relevant variables they can be used to describe the peculiar behavior of the system under study in two different ways: impulse response (IR) curves and Akaike's relative power contribution. The original program of Akaike is modified for exclusive uses in the analysis of clinical data.<<ETX>>\",\"PeriodicalId\":365366,\"journal\":{\"name\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMSYS.1990.109444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMSYS.1990.109444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Akaike's model versus conventional spectral analysis as tools for analyzing multivariate clinical time series
Akaike's method of multivariate autoregressive (AR) modeling is applied to time-series analysis of clinical data. The present approach successfully demonstrated the peculiar power spectrum in various time-series data, which failed to be detected by FFT analysis because of abundant noise. Once AR coefficients are computed from the observed time-series of the relevant variables they can be used to describe the peculiar behavior of the system under study in two different ways: impulse response (IR) curves and Akaike's relative power contribution. The original program of Akaike is modified for exclusive uses in the analysis of clinical data.<>