一种求解MSAE和MMAE回归问题的有效算法

S. Narula, J. F. Wellington
{"title":"一种求解MSAE和MMAE回归问题的有效算法","authors":"S. Narula, J. F. Wellington","doi":"10.1137/0909047","DOIUrl":null,"url":null,"abstract":"In the past quarter century, the minimum sum of absolute errors (MSAE) regression and the minimization of the maximum absolute error (MMAE) regression have attracted much attention as alternatives to the popular least squares regression. For the multiple linear regression, the MSAE and the MMAE regression problems can be formulated and solved as linear programming problems. Several efficient special purpose algorithms have been developed for each problem. Thus one needs two different algorithms and two separate computer codes to find the MSAE and the MMAE regression equations. In this paper, we develop an efficient algorithm to solve both problems. The proposed algorithm exploits the special structure of and the similarities between the problems. We illustrate it with a simple numerical example.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Efficient Algorithm for the MSAE and the MMAE Regression Problems\",\"authors\":\"S. Narula, J. F. Wellington\",\"doi\":\"10.1137/0909047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past quarter century, the minimum sum of absolute errors (MSAE) regression and the minimization of the maximum absolute error (MMAE) regression have attracted much attention as alternatives to the popular least squares regression. For the multiple linear regression, the MSAE and the MMAE regression problems can be formulated and solved as linear programming problems. Several efficient special purpose algorithms have been developed for each problem. Thus one needs two different algorithms and two separate computer codes to find the MSAE and the MMAE regression equations. In this paper, we develop an efficient algorithm to solve both problems. The proposed algorithm exploits the special structure of and the similarities between the problems. We illustrate it with a simple numerical example.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0909047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的25年里,最小绝对误差和回归(MSAE)和最大绝对误差最小化回归(MMAE)作为流行的最小二乘回归的替代方法受到了广泛的关注。对于多元线性回归,MSAE和MMAE回归问题可以用线性规划问题来表述和求解。针对每个问题都开发了几种高效的专用算法。因此,需要两种不同的算法和两种不同的计算机代码来找到MSAE和MMAE回归方程。在本文中,我们开发了一种有效的算法来解决这两个问题。该算法利用了问题的特殊结构和问题之间的相似性。我们用一个简单的数值例子来说明它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Algorithm for the MSAE and the MMAE Regression Problems
In the past quarter century, the minimum sum of absolute errors (MSAE) regression and the minimization of the maximum absolute error (MMAE) regression have attracted much attention as alternatives to the popular least squares regression. For the multiple linear regression, the MSAE and the MMAE regression problems can be formulated and solved as linear programming problems. Several efficient special purpose algorithms have been developed for each problem. Thus one needs two different algorithms and two separate computer codes to find the MSAE and the MMAE regression equations. In this paper, we develop an efficient algorithm to solve both problems. The proposed algorithm exploits the special structure of and the similarities between the problems. We illustrate it with a simple numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信