基于voronoi的潜在可见集和可见性查询算法

Lin Lu, Chenglei Yang, Weizhen Wang, Junqing Zhang
{"title":"基于voronoi的潜在可见集和可见性查询算法","authors":"Lin Lu, Chenglei Yang, Weizhen Wang, Junqing Zhang","doi":"10.1109/ISVD.2011.39","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the concept of Voronoi-based potentially visible set, called V\\text underscore PVS, to facilitate the visibility computation. Given a polygon $P$, we first compute the Voronoi diagram of $P$, i.e., $\\text{VD}(P)$. Then we refine $\\text{VD}(P)$ into $\\text{VD}(P')$, so that $\\text{VD}(P')$ only contains triangular or quadrangular cells. For each Voronoi edge, a V\\text underscore PVS is computed, which stores the visibility information of the Voronoi vertices and critical points on the edge. Based on the V\\text underscore PVS, we can fast query the visibility polygons of an arbitrary point, a segment or a trajectory, a region, and a moving point using a uniform data structure.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Voronoi-Based Potentially Visible Set and Visibility Query Algorithms\",\"authors\":\"Lin Lu, Chenglei Yang, Weizhen Wang, Junqing Zhang\",\"doi\":\"10.1109/ISVD.2011.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the concept of Voronoi-based potentially visible set, called V\\\\text underscore PVS, to facilitate the visibility computation. Given a polygon $P$, we first compute the Voronoi diagram of $P$, i.e., $\\\\text{VD}(P)$. Then we refine $\\\\text{VD}(P)$ into $\\\\text{VD}(P')$, so that $\\\\text{VD}(P')$ only contains triangular or quadrangular cells. For each Voronoi edge, a V\\\\text underscore PVS is computed, which stores the visibility information of the Voronoi vertices and critical points on the edge. Based on the V\\\\text underscore PVS, we can fast query the visibility polygons of an arbitrary point, a segment or a trajectory, a region, and a moving point using a uniform data structure.\",\"PeriodicalId\":152151,\"journal\":{\"name\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2011.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了基于voronoi的潜在可见集的概念,称为V\text下划线PVS,以方便可见性计算。给定一个多边形$P$,我们首先计算$P$的Voronoi图,即$\text{VD}(P)$。然后我们将$\text{VD}(P)$精炼为$\text{VD}(P')$,这样$\text{VD}(P')$只包含三角形或四边形单元格。对于每条Voronoi边缘,计算一个V\text下划线的PVS,它存储了Voronoi顶点和边缘上临界点的可见性信息。基于文本下划线PVS,我们可以使用统一的数据结构快速查询任意点、段或轨迹、区域和移动点的可见性多边形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voronoi-Based Potentially Visible Set and Visibility Query Algorithms
In this paper, we propose the concept of Voronoi-based potentially visible set, called V\text underscore PVS, to facilitate the visibility computation. Given a polygon $P$, we first compute the Voronoi diagram of $P$, i.e., $\text{VD}(P)$. Then we refine $\text{VD}(P)$ into $\text{VD}(P')$, so that $\text{VD}(P')$ only contains triangular or quadrangular cells. For each Voronoi edge, a V\text underscore PVS is computed, which stores the visibility information of the Voronoi vertices and critical points on the edge. Based on the V\text underscore PVS, we can fast query the visibility polygons of an arbitrary point, a segment or a trajectory, a region, and a moving point using a uniform data structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信