无约束优化问题的一种简化高效引力搜索算法

Xin Zhang, D. Zou, Xin Shen
{"title":"无约束优化问题的一种简化高效引力搜索算法","authors":"Xin Zhang, D. Zou, Xin Shen","doi":"10.1109/ICVISP.2017.14","DOIUrl":null,"url":null,"abstract":"Aiming at the shortcomings that the gravitational search algorithm (GSA) is easy to fall into the local optima, this paper proposes a simplified gravitational search algorithm (SGSA). This improved gravitational search algorithm has the characteristics of faster optimization process and better convergence accuracy for solving unconstrained optimization problems. In the search process, SGSA discards the velocity and only performs the particles' position update including the particles acceleration. Ten benchmark functions are used to verify the performance of the SGSA algorithm, and the experimental results show that SGSA is better than the other four approaches with different improvement strategies for most cases.","PeriodicalId":404467,"journal":{"name":"2017 International Conference on Vision, Image and Signal Processing (ICVISP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Simplified and Efficient Gravitational Search Algorithm for Unconstrained Optimization Problems\",\"authors\":\"Xin Zhang, D. Zou, Xin Shen\",\"doi\":\"10.1109/ICVISP.2017.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the shortcomings that the gravitational search algorithm (GSA) is easy to fall into the local optima, this paper proposes a simplified gravitational search algorithm (SGSA). This improved gravitational search algorithm has the characteristics of faster optimization process and better convergence accuracy for solving unconstrained optimization problems. In the search process, SGSA discards the velocity and only performs the particles' position update including the particles acceleration. Ten benchmark functions are used to verify the performance of the SGSA algorithm, and the experimental results show that SGSA is better than the other four approaches with different improvement strategies for most cases.\",\"PeriodicalId\":404467,\"journal\":{\"name\":\"2017 International Conference on Vision, Image and Signal Processing (ICVISP)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Vision, Image and Signal Processing (ICVISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVISP.2017.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Vision, Image and Signal Processing (ICVISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVISP.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对引力搜索算法容易陷入局部最优的缺点,提出了一种简化的引力搜索算法(SGSA)。这种改进的引力搜索算法在求解无约束优化问题时具有寻优速度快、收敛精度高的特点。在搜索过程中,SGSA丢弃了速度,只进行包含粒子加速度的粒子位置更新。使用10个基准函数验证了SGSA算法的性能,实验结果表明,在大多数情况下,采用不同的改进策略,SGSA算法都优于其他四种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simplified and Efficient Gravitational Search Algorithm for Unconstrained Optimization Problems
Aiming at the shortcomings that the gravitational search algorithm (GSA) is easy to fall into the local optima, this paper proposes a simplified gravitational search algorithm (SGSA). This improved gravitational search algorithm has the characteristics of faster optimization process and better convergence accuracy for solving unconstrained optimization problems. In the search process, SGSA discards the velocity and only performs the particles' position update including the particles acceleration. Ten benchmark functions are used to verify the performance of the SGSA algorithm, and the experimental results show that SGSA is better than the other four approaches with different improvement strategies for most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信