基于影响值强化学习的监督学习新方法

André Valdivia, Jose Herrera Quispe, D. Barrios-Aranibar
{"title":"基于影响值强化学习的监督学习新方法","authors":"André Valdivia, Jose Herrera Quispe, D. Barrios-Aranibar","doi":"10.1145/3184066.3184094","DOIUrl":null,"url":null,"abstract":"The neural self-organization, is an innate feature of the mammal's brains, and is necessary for its operation. The most known neuronal models that use this characteristic are the self-organized maps (SOM) and the adaptive resonance theory (ART), but those models, did not take the neuron as a processing unit, as the biological counterpart. On the other hand, the influence value learning paradigm [1], used in multi-agent environments, proof that agents can communicate with each other [2]; and they can self-organize to assign tasks; without any interference. Motivated by this missing feature in artificial networks, and with the influence value reinforcement learning algorithm; a new approach to supervised learning was modeled using the neuron as an agent learning by reinforcement.","PeriodicalId":109559,"journal":{"name":"International Conference on Machine Learning and Soft Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for supervised learning based influence value reinforcement learning\",\"authors\":\"André Valdivia, Jose Herrera Quispe, D. Barrios-Aranibar\",\"doi\":\"10.1145/3184066.3184094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neural self-organization, is an innate feature of the mammal's brains, and is necessary for its operation. The most known neuronal models that use this characteristic are the self-organized maps (SOM) and the adaptive resonance theory (ART), but those models, did not take the neuron as a processing unit, as the biological counterpart. On the other hand, the influence value learning paradigm [1], used in multi-agent environments, proof that agents can communicate with each other [2]; and they can self-organize to assign tasks; without any interference. Motivated by this missing feature in artificial networks, and with the influence value reinforcement learning algorithm; a new approach to supervised learning was modeled using the neuron as an agent learning by reinforcement.\",\"PeriodicalId\":109559,\"journal\":{\"name\":\"International Conference on Machine Learning and Soft Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184066.3184094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184066.3184094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经自组织是哺乳动物大脑的先天特征,是其运作所必需的。利用这一特征的最著名的神经元模型是自组织映射(SOM)和自适应共振理论(ART),但这些模型并没有把神经元作为一个处理单元,作为生物对应体。另一方面,在多智能体环境中使用的影响值学习范式[1]证明了智能体之间可以相互通信[2];他们可以自我组织分配任务;没有任何干扰。基于这种缺失特征在人工网络中的激励,并结合影响值强化学习算法;提出了一种新的监督学习方法,将神经元作为智能体进行强化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach for supervised learning based influence value reinforcement learning
The neural self-organization, is an innate feature of the mammal's brains, and is necessary for its operation. The most known neuronal models that use this characteristic are the self-organized maps (SOM) and the adaptive resonance theory (ART), but those models, did not take the neuron as a processing unit, as the biological counterpart. On the other hand, the influence value learning paradigm [1], used in multi-agent environments, proof that agents can communicate with each other [2]; and they can self-organize to assign tasks; without any interference. Motivated by this missing feature in artificial networks, and with the influence value reinforcement learning algorithm; a new approach to supervised learning was modeled using the neuron as an agent learning by reinforcement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信