使用基于氡变换的音频特征自动提取色情内容

Myungjong Kim, Hoirin Kim
{"title":"使用基于氡变换的音频特征自动提取色情内容","authors":"Myungjong Kim, Hoirin Kim","doi":"10.1109/CBMI.2011.5972546","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of classifying pornographic sounds, such as sexual scream or moan, to detect and block the objectionable multimedia contents. To represent the large temporal variations of pornographic sounds, we propose a novel feature extraction method based on Radon transform. Radon transform provides a way to extract the global trend of orientations in a 2-D region and therefore it is applicable to the time-frequency spectrograms in the long-range segment to capture the large temporal variations of sexual sounds. Radon feature is extracted using histograms and flux of Radon coefficients. We adopt Gaussian mixture model to statistically represent the pornographic and non-pornographic sounds, and the test sounds are classified by using likelihood ratio test. Evaluations on several hundred pornographic and non-pornographic sound clips indicate that the proposed features can achieve satisfactory results that this approach could be used as an alternative to the image-based methods.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Automatic extraction of pornographic contents using radon transform based audio features\",\"authors\":\"Myungjong Kim, Hoirin Kim\",\"doi\":\"10.1109/CBMI.2011.5972546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the problem of classifying pornographic sounds, such as sexual scream or moan, to detect and block the objectionable multimedia contents. To represent the large temporal variations of pornographic sounds, we propose a novel feature extraction method based on Radon transform. Radon transform provides a way to extract the global trend of orientations in a 2-D region and therefore it is applicable to the time-frequency spectrograms in the long-range segment to capture the large temporal variations of sexual sounds. Radon feature is extracted using histograms and flux of Radon coefficients. We adopt Gaussian mixture model to statistically represent the pornographic and non-pornographic sounds, and the test sounds are classified by using likelihood ratio test. Evaluations on several hundred pornographic and non-pornographic sound clips indicate that the proposed features can achieve satisfactory results that this approach could be used as an alternative to the image-based methods.\",\"PeriodicalId\":358337,\"journal\":{\"name\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2011.5972546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文主要研究色情声音的分类问题,如性尖叫或性呻吟,以检测和屏蔽令人反感的多媒体内容。针对色情声音的大时间变化特征,提出了一种基于Radon变换的特征提取方法。Radon变换提供了一种在二维区域中提取全局方向趋势的方法,因此它适用于远程段的时频谱图,以捕捉性声音的大时间变化。利用Radon系数的直方图和通量提取Radon特征。我们采用高斯混合模型对色情和非色情声音进行统计表示,并使用似然比检验对测试声音进行分类。对数百个色情和非色情声音片段的评估表明,所提出的特征可以达到令人满意的结果,该方法可以用作基于图像的方法的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic extraction of pornographic contents using radon transform based audio features
This paper focuses on the problem of classifying pornographic sounds, such as sexual scream or moan, to detect and block the objectionable multimedia contents. To represent the large temporal variations of pornographic sounds, we propose a novel feature extraction method based on Radon transform. Radon transform provides a way to extract the global trend of orientations in a 2-D region and therefore it is applicable to the time-frequency spectrograms in the long-range segment to capture the large temporal variations of sexual sounds. Radon feature is extracted using histograms and flux of Radon coefficients. We adopt Gaussian mixture model to statistically represent the pornographic and non-pornographic sounds, and the test sounds are classified by using likelihood ratio test. Evaluations on several hundred pornographic and non-pornographic sound clips indicate that the proposed features can achieve satisfactory results that this approach could be used as an alternative to the image-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信