{"title":"可定义的树分解","authors":"Martin Grohe","doi":"10.1109/LICS.2008.10","DOIUrl":null,"url":null,"abstract":"We introduce a notion of definable tree decompositions of graphs. Actually, a definable tree decomposition of a graph is not just a tree decomposition, but a more complicated structure that represents many different tree decompositions of the graph. It is definable in the graph by a tuple of formulas of some logic. In this paper, only study tree decomposition definable in fixed-point logic. We say that a definable tree decomposition is over a class of graphs if the pieces of the decomposition are in this class. We prove two general theorems lifting definability results from the pieces of a tree decomposition of a graph to the whole graph. Besides unifying earlier work on fixed-point definability and descriptive complexity theory on planar graphs and graphs of bounded tree width, these general results can be used to prove that the class of all graphs without a K5-minor is definable infixed-point logic and that fixed-point logic with counting captures polynomial time on this class.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Definable Tree Decompositions\",\"authors\":\"Martin Grohe\",\"doi\":\"10.1109/LICS.2008.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a notion of definable tree decompositions of graphs. Actually, a definable tree decomposition of a graph is not just a tree decomposition, but a more complicated structure that represents many different tree decompositions of the graph. It is definable in the graph by a tuple of formulas of some logic. In this paper, only study tree decomposition definable in fixed-point logic. We say that a definable tree decomposition is over a class of graphs if the pieces of the decomposition are in this class. We prove two general theorems lifting definability results from the pieces of a tree decomposition of a graph to the whole graph. Besides unifying earlier work on fixed-point definability and descriptive complexity theory on planar graphs and graphs of bounded tree width, these general results can be used to prove that the class of all graphs without a K5-minor is definable infixed-point logic and that fixed-point logic with counting captures polynomial time on this class.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a notion of definable tree decompositions of graphs. Actually, a definable tree decomposition of a graph is not just a tree decomposition, but a more complicated structure that represents many different tree decompositions of the graph. It is definable in the graph by a tuple of formulas of some logic. In this paper, only study tree decomposition definable in fixed-point logic. We say that a definable tree decomposition is over a class of graphs if the pieces of the decomposition are in this class. We prove two general theorems lifting definability results from the pieces of a tree decomposition of a graph to the whole graph. Besides unifying earlier work on fixed-point definability and descriptive complexity theory on planar graphs and graphs of bounded tree width, these general results can be used to prove that the class of all graphs without a K5-minor is definable infixed-point logic and that fixed-point logic with counting captures polynomial time on this class.