基于测量的分布式能源WECC复合负荷模型参数估计

N. Avila, Leonardo Callegaro, J. Fletcher
{"title":"基于测量的分布式能源WECC复合负荷模型参数估计","authors":"N. Avila, Leonardo Callegaro, J. Fletcher","doi":"10.1109/PESGM41954.2020.9281843","DOIUrl":null,"url":null,"abstract":"The development of advanced composite load models is imperative for accurate dynamic stability analysis of electric power systems. In North America, the Load Modelling Task Force (LMTF) endorsed the WECC composite load model for dynamic simulations of transmission networks. However, due to its complex dynamics and large number of parameters, little attention has been paid to the estimation of its parameters from online measurements. This load model incorporates the switching action of different built-in protection devices, which negatively affects the performance of conventional nonlinear programming algorithms. This paper introduces a hybrid optimization approach to estimate the parameters of the WECC composite load model. Parameters associated with dynamic and static equations, which are constrained by the physical interpretation of the model, are estimated by nonlinear programming techniques. On the other hand, protection parameters are estimated using a surrogate model of the objective function based on Radial Basis Function (RBF) optimization. The proposed scheme is validated with simulated and actual measurements collected across Australia.","PeriodicalId":106476,"journal":{"name":"2020 IEEE Power & Energy Society General Meeting (PESGM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Measurement-Based Parameter Estimation for the WECC Composite Load Model with Distributed Energy Resources\",\"authors\":\"N. Avila, Leonardo Callegaro, J. Fletcher\",\"doi\":\"10.1109/PESGM41954.2020.9281843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of advanced composite load models is imperative for accurate dynamic stability analysis of electric power systems. In North America, the Load Modelling Task Force (LMTF) endorsed the WECC composite load model for dynamic simulations of transmission networks. However, due to its complex dynamics and large number of parameters, little attention has been paid to the estimation of its parameters from online measurements. This load model incorporates the switching action of different built-in protection devices, which negatively affects the performance of conventional nonlinear programming algorithms. This paper introduces a hybrid optimization approach to estimate the parameters of the WECC composite load model. Parameters associated with dynamic and static equations, which are constrained by the physical interpretation of the model, are estimated by nonlinear programming techniques. On the other hand, protection parameters are estimated using a surrogate model of the objective function based on Radial Basis Function (RBF) optimization. The proposed scheme is validated with simulated and actual measurements collected across Australia.\",\"PeriodicalId\":106476,\"journal\":{\"name\":\"2020 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM41954.2020.9281843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM41954.2020.9281843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

发展先进的复合负荷模型对电力系统的动态稳定性分析具有重要意义。在北美,负荷建模工作组(LMTF)认可了用于输电网动态模拟的WECC复合负荷模型。然而,由于其复杂的动力学特性和大量的参数,从在线测量中估计其参数的研究很少受到重视。该负载模型包含了不同内置保护装置的开关动作,这对传统非线性规划算法的性能产生了不利影响。本文介绍了一种混合优化方法来估计WECC复合荷载模型的参数。与动态和静态方程相关的参数受模型物理解释的约束,通过非线性规划技术进行估计。另一方面,利用基于径向基函数(RBF)优化的目标函数代理模型估计保护参数。该方案通过在澳大利亚各地收集的模拟和实际测量数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement-Based Parameter Estimation for the WECC Composite Load Model with Distributed Energy Resources
The development of advanced composite load models is imperative for accurate dynamic stability analysis of electric power systems. In North America, the Load Modelling Task Force (LMTF) endorsed the WECC composite load model for dynamic simulations of transmission networks. However, due to its complex dynamics and large number of parameters, little attention has been paid to the estimation of its parameters from online measurements. This load model incorporates the switching action of different built-in protection devices, which negatively affects the performance of conventional nonlinear programming algorithms. This paper introduces a hybrid optimization approach to estimate the parameters of the WECC composite load model. Parameters associated with dynamic and static equations, which are constrained by the physical interpretation of the model, are estimated by nonlinear programming techniques. On the other hand, protection parameters are estimated using a surrogate model of the objective function based on Radial Basis Function (RBF) optimization. The proposed scheme is validated with simulated and actual measurements collected across Australia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信