{"title":"Twitter用户的性别识别功能组合","authors":"Daniel Fernandez, Daniela Moctezuma, O. Siordia","doi":"10.1109/ROPEC.2016.7830623","DOIUrl":null,"url":null,"abstract":"Gender classification in social platforms and social media has become a relevant topic for the industry because of its impact in making decision process. Gender recognition in Twitter is a business intelligence tool focused on twitter data acquisition, analysis, and process, and it can be used in many ways to transform it into valuable business intelligence data. In this paper, a method for gender recognition in Twitter users is proposed. This method employs several features related to user profile picture, screen name and profile description. This method was evaluated in a dataset with 574 users acquired from Twitter API, these users are located in Aguascalientes City at Mexico and they were manually labelled. The experimental results show an accuracy of 89.5%","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Features combination for gender recognition on Twitter users\",\"authors\":\"Daniel Fernandez, Daniela Moctezuma, O. Siordia\",\"doi\":\"10.1109/ROPEC.2016.7830623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender classification in social platforms and social media has become a relevant topic for the industry because of its impact in making decision process. Gender recognition in Twitter is a business intelligence tool focused on twitter data acquisition, analysis, and process, and it can be used in many ways to transform it into valuable business intelligence data. In this paper, a method for gender recognition in Twitter users is proposed. This method employs several features related to user profile picture, screen name and profile description. This method was evaluated in a dataset with 574 users acquired from Twitter API, these users are located in Aguascalientes City at Mexico and they were manually labelled. The experimental results show an accuracy of 89.5%\",\"PeriodicalId\":166098,\"journal\":{\"name\":\"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2016.7830623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Features combination for gender recognition on Twitter users
Gender classification in social platforms and social media has become a relevant topic for the industry because of its impact in making decision process. Gender recognition in Twitter is a business intelligence tool focused on twitter data acquisition, analysis, and process, and it can be used in many ways to transform it into valuable business intelligence data. In this paper, a method for gender recognition in Twitter users is proposed. This method employs several features related to user profile picture, screen name and profile description. This method was evaluated in a dataset with 574 users acquired from Twitter API, these users are located in Aguascalientes City at Mexico and they were manually labelled. The experimental results show an accuracy of 89.5%