随机几何

O. Barndorff-Nielsen, M. Lieshout, W. Kendall
{"title":"随机几何","authors":"O. Barndorff-Nielsen, M. Lieshout, W. Kendall","doi":"10.1201/9780203738276","DOIUrl":null,"url":null,"abstract":"textabstractStochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: \no a \"crash-course\" introduction to key stochastic geometry themes \no considerations of geometric sampling bias issues \no tesselations \no shape \no random sets \no image analysis \no spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo","PeriodicalId":257527,"journal":{"name":"Encyclopedia of Wireless Networks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Stochastic Geometry\",\"authors\":\"O. Barndorff-Nielsen, M. Lieshout, W. Kendall\",\"doi\":\"10.1201/9780203738276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"textabstractStochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: \\no a \\\"crash-course\\\" introduction to key stochastic geometry themes \\no considerations of geometric sampling bias issues \\no tesselations \\no shape \\no random sets \\no image analysis \\no spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo\",\"PeriodicalId\":257527,\"journal\":{\"name\":\"Encyclopedia of Wireless Networks\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Wireless Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780203738276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780203738276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

随机几何涉及对随机几何结构的研究,并混合了几何、概率和统计方法,为建模和分析提供了强大的技术。计算统计分析的最新发展,特别是马尔可夫链蒙特卡罗,极大地扩展了可行的应用范围。《随机几何:似然与计算》提供了关于快速发展的随机几何领域重要方面的章节的协调集合,包括:对关键随机几何主题的“速成课程”介绍、几何抽样偏差问题的考虑、镶嵌、形状、随机集、图像分析、基于似然推理的惊人进展,现在通过马尔可夫链蒙特卡罗技术可用于随机几何
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Geometry
textabstractStochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: o a "crash-course" introduction to key stochastic geometry themes o considerations of geometric sampling bias issues o tesselations o shape o random sets o image analysis o spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信