{"title":"高效的并行范围搜索和分区算法*","authors":"A. Datta","doi":"10.1080/01495730108935276","DOIUrl":null,"url":null,"abstract":"We present an optimal parallel construction of the range tree data structure and use this construction to solve several geometric partitioning problems. In the range tree, we show how to perform a count-mode orthogonal range query in 0(log n) time by a single processor and a report mode orthogonal range query in 0(log n) time using 0(1 + log n) processors, where k is the number of points inside the query range. We consider partitioning problems of the following nature. Given a planar point set S (∣S∣ = ri) a measure μacting on 5 and a pair of values μ1 and μ2,the task is to find a partition of S into two components S1 and S2 (S = S1U S2) such that μ(S1) =μ1 for i=1, 2. We consider several measures like diameter under L∞ and l1 metric; area, perimeter of the smallest enclosing axes-parallel rectangle; and the side length of the smallest enclosing axes-parallel square. All our parallel algorithms foi partitioning problems run in 0(log n) time using 0(n) processors. Our algorithms are designed for the CREW PRAM model of parallel computation.","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EFFICIENT PARALLEL RANGE SEARCHING AND PARTITIONING ALGORITHMS*\",\"authors\":\"A. Datta\",\"doi\":\"10.1080/01495730108935276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an optimal parallel construction of the range tree data structure and use this construction to solve several geometric partitioning problems. In the range tree, we show how to perform a count-mode orthogonal range query in 0(log n) time by a single processor and a report mode orthogonal range query in 0(log n) time using 0(1 + log n) processors, where k is the number of points inside the query range. We consider partitioning problems of the following nature. Given a planar point set S (∣S∣ = ri) a measure μacting on 5 and a pair of values μ1 and μ2,the task is to find a partition of S into two components S1 and S2 (S = S1U S2) such that μ(S1) =μ1 for i=1, 2. We consider several measures like diameter under L∞ and l1 metric; area, perimeter of the smallest enclosing axes-parallel rectangle; and the side length of the smallest enclosing axes-parallel square. All our parallel algorithms foi partitioning problems run in 0(log n) time using 0(n) processors. Our algorithms are designed for the CREW PRAM model of parallel computation.\",\"PeriodicalId\":406098,\"journal\":{\"name\":\"Parallel Algorithms and Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495730108935276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495730108935276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EFFICIENT PARALLEL RANGE SEARCHING AND PARTITIONING ALGORITHMS*
We present an optimal parallel construction of the range tree data structure and use this construction to solve several geometric partitioning problems. In the range tree, we show how to perform a count-mode orthogonal range query in 0(log n) time by a single processor and a report mode orthogonal range query in 0(log n) time using 0(1 + log n) processors, where k is the number of points inside the query range. We consider partitioning problems of the following nature. Given a planar point set S (∣S∣ = ri) a measure μacting on 5 and a pair of values μ1 and μ2,the task is to find a partition of S into two components S1 and S2 (S = S1U S2) such that μ(S1) =μ1 for i=1, 2. We consider several measures like diameter under L∞ and l1 metric; area, perimeter of the smallest enclosing axes-parallel rectangle; and the side length of the smallest enclosing axes-parallel square. All our parallel algorithms foi partitioning problems run in 0(log n) time using 0(n) processors. Our algorithms are designed for the CREW PRAM model of parallel computation.