基于深度学习的集水区多流量多小时预测

D. Karimanzira, Linda Ritzau, Katharina Emde
{"title":"基于深度学习的集水区多流量多小时预测","authors":"D. Karimanzira, Linda Ritzau, Katharina Emde","doi":"10.14738/tmlai.105.13049","DOIUrl":null,"url":null,"abstract":"Modeling of rainfall-runoff is very critical for flood prediction studies in decision making for disaster management. Deep learning methods have proven to be very useful in hydrological prediction. To increase their acceptance in the hydrological community, they must be physic-informed and show some interpretability. They are several ways this can be achieved e.g. by learning from a fully-trained hydrological model which assumes the availability of the hydrological model or to use physic-informed data. In this work we developed a Graph Attention Network (GAT) with learnable Adjacency Matrix coupled with a Bi-directional Gated Temporal Convolutional Neural Network (2DGAT-BiLSTM). Physic-informed data with spatial information from Digital Elevation Model and geographical data is used to train it. Besides, precipitation, evapotranspiration and discharge, the model utilizes the catchment area characteristic information, such as instantaneous slope, soil type, drainage area etc. The method is compared to two different current developments in deep learning structures for streamflow prediction, which also utilize all the spatial and temporal information in an integrated way. One, namely Graph Neural Rainfall-Runoff Models (GNRRM) uses timeseries prediction on each node and a Graph Neural Network (GNN) to route the information to the target node and another one called STA-LSTM is based on Spatial and temporal Attention Mechanism and Long Short Term Memory (LSTM) for prediction. The different methods were compared in their performance in predicting the flow at several points of a pilot catchment area. With an average prediction NSE and KGE of 0.995 and 0.981, respectively for 2DGAT-BiLSTM, it could be shown that graph attention mechanism and learning the adjacency matrix for spatial information can boost the model performance and robustness, and bring interpretability and with the inclusion of domain knowledge the acceptance of the models.","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Catchment Area Multi-Streamflow Multiple Hours Ahead Forecast Based on Deep Learning\",\"authors\":\"D. Karimanzira, Linda Ritzau, Katharina Emde\",\"doi\":\"10.14738/tmlai.105.13049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling of rainfall-runoff is very critical for flood prediction studies in decision making for disaster management. Deep learning methods have proven to be very useful in hydrological prediction. To increase their acceptance in the hydrological community, they must be physic-informed and show some interpretability. They are several ways this can be achieved e.g. by learning from a fully-trained hydrological model which assumes the availability of the hydrological model or to use physic-informed data. In this work we developed a Graph Attention Network (GAT) with learnable Adjacency Matrix coupled with a Bi-directional Gated Temporal Convolutional Neural Network (2DGAT-BiLSTM). Physic-informed data with spatial information from Digital Elevation Model and geographical data is used to train it. Besides, precipitation, evapotranspiration and discharge, the model utilizes the catchment area characteristic information, such as instantaneous slope, soil type, drainage area etc. The method is compared to two different current developments in deep learning structures for streamflow prediction, which also utilize all the spatial and temporal information in an integrated way. One, namely Graph Neural Rainfall-Runoff Models (GNRRM) uses timeseries prediction on each node and a Graph Neural Network (GNN) to route the information to the target node and another one called STA-LSTM is based on Spatial and temporal Attention Mechanism and Long Short Term Memory (LSTM) for prediction. The different methods were compared in their performance in predicting the flow at several points of a pilot catchment area. With an average prediction NSE and KGE of 0.995 and 0.981, respectively for 2DGAT-BiLSTM, it could be shown that graph attention mechanism and learning the adjacency matrix for spatial information can boost the model performance and robustness, and bring interpretability and with the inclusion of domain knowledge the acceptance of the models.\",\"PeriodicalId\":119801,\"journal\":{\"name\":\"Transactions on Machine Learning and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Machine Learning and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tmlai.105.13049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.105.13049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

降雨径流模拟是灾害管理决策中洪水预测研究的重要内容。深度学习方法已被证明在水文预测中非常有用。为了提高它们在水文界的接受度,它们必须具有物理知识并具有一定的可解释性。有几种方法可以实现这一目标,例如,通过从一个充分训练的水文模型中学习,该模型假设水文模型的可用性,或者使用物理信息数据。在这项工作中,我们开发了一个具有可学习邻接矩阵的图注意网络(GAT)与双向门控时间卷积神经网络(2DGAT-BiLSTM)相结合。利用数字高程模型空间信息和地理数据的物理信息数据对其进行训练。除了降水、蒸散发和流量外,模型还利用了流域瞬时坡度、土壤类型、流域面积等特征信息。将该方法与当前两种不同的深度学习结构进行了比较,这两种结构也综合利用了所有的时空信息。其中一种是图神经降雨径流模型(Graph Neural rain - runoff Models, GNRRM),它在每个节点上进行时间序列预测,并通过图神经网络(Graph Neural Network, GNN)将信息路由到目标节点;另一种是STA-LSTM,它基于时空注意机制和长短期记忆(LSTM)进行预测。不同的方法在预测流量在试点汇水区几个点的性能进行了比较。2DGAT-BiLSTM的平均预测NSE和KGE分别为0.995和0.981,表明图注意机制和空间信息邻接矩阵的学习可以提高模型的性能和鲁棒性,并带来可解释性,并通过包含领域知识提高模型的可接受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catchment Area Multi-Streamflow Multiple Hours Ahead Forecast Based on Deep Learning
Modeling of rainfall-runoff is very critical for flood prediction studies in decision making for disaster management. Deep learning methods have proven to be very useful in hydrological prediction. To increase their acceptance in the hydrological community, they must be physic-informed and show some interpretability. They are several ways this can be achieved e.g. by learning from a fully-trained hydrological model which assumes the availability of the hydrological model or to use physic-informed data. In this work we developed a Graph Attention Network (GAT) with learnable Adjacency Matrix coupled with a Bi-directional Gated Temporal Convolutional Neural Network (2DGAT-BiLSTM). Physic-informed data with spatial information from Digital Elevation Model and geographical data is used to train it. Besides, precipitation, evapotranspiration and discharge, the model utilizes the catchment area characteristic information, such as instantaneous slope, soil type, drainage area etc. The method is compared to two different current developments in deep learning structures for streamflow prediction, which also utilize all the spatial and temporal information in an integrated way. One, namely Graph Neural Rainfall-Runoff Models (GNRRM) uses timeseries prediction on each node and a Graph Neural Network (GNN) to route the information to the target node and another one called STA-LSTM is based on Spatial and temporal Attention Mechanism and Long Short Term Memory (LSTM) for prediction. The different methods were compared in their performance in predicting the flow at several points of a pilot catchment area. With an average prediction NSE and KGE of 0.995 and 0.981, respectively for 2DGAT-BiLSTM, it could be shown that graph attention mechanism and learning the adjacency matrix for spatial information can boost the model performance and robustness, and bring interpretability and with the inclusion of domain knowledge the acceptance of the models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信