参数概率灵敏度估计的一种快速近似方法

Qinshu He, Xin-en Liu, Shifu Xiao
{"title":"参数概率灵敏度估计的一种快速近似方法","authors":"Qinshu He, Xin-en Liu, Shifu Xiao","doi":"10.1109/ICACTE.2010.5579550","DOIUrl":null,"url":null,"abstract":"The analysis of parametric probabilistic sensitivity analysis is important for reliability-based design, which shows changes of system reliability caused by the change of basic variances. In this paper, a fast approximate method of reliability analysis based on the commercial FE simulation-artificial neural network-Monte Carlo simulation is proposed, which can save the calculation cost with efficient precision. With this quick-response model, a new scaling parameter is presented here considering the global dispersity of stochastic parameters, and the parametric probabilistic sensitivity is analyzed too. The sensitivity indices can be computed by the simple and approximate formula in engineering. A numerical example is presented to validate the accuracy and efficiency in reliability and parametric probabilistic sensitivity by comparing with the analysis of ANSYS.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A fast approximate method for parametric probabilistic sensitivity estimation\",\"authors\":\"Qinshu He, Xin-en Liu, Shifu Xiao\",\"doi\":\"10.1109/ICACTE.2010.5579550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of parametric probabilistic sensitivity analysis is important for reliability-based design, which shows changes of system reliability caused by the change of basic variances. In this paper, a fast approximate method of reliability analysis based on the commercial FE simulation-artificial neural network-Monte Carlo simulation is proposed, which can save the calculation cost with efficient precision. With this quick-response model, a new scaling parameter is presented here considering the global dispersity of stochastic parameters, and the parametric probabilistic sensitivity is analyzed too. The sensitivity indices can be computed by the simple and approximate formula in engineering. A numerical example is presented to validate the accuracy and efficiency in reliability and parametric probabilistic sensitivity by comparing with the analysis of ANSYS.\",\"PeriodicalId\":255806,\"journal\":{\"name\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2010.5579550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

参数概率敏感性分析是基于可靠性设计的重要分析方法,它反映了系统的基本方差变化引起的可靠性变化。本文提出了一种基于商用有限元仿真-人工神经网络-蒙特卡罗仿真的可靠性快速近似分析方法,该方法在节省计算成本的同时具有较高的精度。在该快速响应模型中,考虑随机参数的全局分散性,提出了新的标度参数,并分析了参数的概率敏感性。灵敏度指标可以用工程上的简单近似公式计算。通过与ANSYS分析结果的比较,验证了该方法在可靠性和参数概率敏感性方面的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast approximate method for parametric probabilistic sensitivity estimation
The analysis of parametric probabilistic sensitivity analysis is important for reliability-based design, which shows changes of system reliability caused by the change of basic variances. In this paper, a fast approximate method of reliability analysis based on the commercial FE simulation-artificial neural network-Monte Carlo simulation is proposed, which can save the calculation cost with efficient precision. With this quick-response model, a new scaling parameter is presented here considering the global dispersity of stochastic parameters, and the parametric probabilistic sensitivity is analyzed too. The sensitivity indices can be computed by the simple and approximate formula in engineering. A numerical example is presented to validate the accuracy and efficiency in reliability and parametric probabilistic sensitivity by comparing with the analysis of ANSYS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信