Sophie Schneider, W. Popp, M. Brogioli, Urs Albisser, Stefan J Ortmann, Inge-Marie Velstra, László Demkó, R. Gassert, A. Curt
{"title":"利用单一可穿戴传感器预测四肢瘫痪脊髓损伤患者在抓取任务中的上肢补偿","authors":"Sophie Schneider, W. Popp, M. Brogioli, Urs Albisser, Stefan J Ortmann, Inge-Marie Velstra, László Demkó, R. Gassert, A. Curt","doi":"10.1109/ICORR.2019.8779561","DOIUrl":null,"url":null,"abstract":"Upper limb (UL) compensation is a common strategy of patients with a high spinal cord injury (SCI), i.e., tetraplegic patients, to perform activities of daily living (ADLs) despite their sensorimotor deficits. Currently, an objective and sensitive tool to assess UL compensation, which is applicable in the clinical routine and in the daily life of patients, is missing. In this work, we propose a metric to quantify this compensation using a single inertial measurement unit (IMU). The spread of forearm pitch angles of an IMU attached to the wrist of 17 SCI patients and 18 healthy controls performing six prehension tasks of the graded redefined assessment of strength, sensibility and prehension (GRASSP) was extracted. Using the spread of the forearm pitch angles, a classification of UL compensation was possible with very good to excellent accuracies in all six different prehension tasks. Furthermore, the spread of forearm pitch angles correlated moderately to very strongly with qualitative and quantitative GRASSP prehension scores and the task duration. Therefore, we conclude that our proposed method has a high potential to classify compensation accurately and objectively and might be used to quantify the degree of UL compensation in ADLs. Thus, this method could be implemented in clinical trials investigating the effectiveness of interventions targeting UL functions.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting upper limb compensation during prehension tasks in tetraplegic spinal cord injured patients using a single wearable sensor\",\"authors\":\"Sophie Schneider, W. Popp, M. Brogioli, Urs Albisser, Stefan J Ortmann, Inge-Marie Velstra, László Demkó, R. Gassert, A. Curt\",\"doi\":\"10.1109/ICORR.2019.8779561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upper limb (UL) compensation is a common strategy of patients with a high spinal cord injury (SCI), i.e., tetraplegic patients, to perform activities of daily living (ADLs) despite their sensorimotor deficits. Currently, an objective and sensitive tool to assess UL compensation, which is applicable in the clinical routine and in the daily life of patients, is missing. In this work, we propose a metric to quantify this compensation using a single inertial measurement unit (IMU). The spread of forearm pitch angles of an IMU attached to the wrist of 17 SCI patients and 18 healthy controls performing six prehension tasks of the graded redefined assessment of strength, sensibility and prehension (GRASSP) was extracted. Using the spread of the forearm pitch angles, a classification of UL compensation was possible with very good to excellent accuracies in all six different prehension tasks. Furthermore, the spread of forearm pitch angles correlated moderately to very strongly with qualitative and quantitative GRASSP prehension scores and the task duration. Therefore, we conclude that our proposed method has a high potential to classify compensation accurately and objectively and might be used to quantify the degree of UL compensation in ADLs. Thus, this method could be implemented in clinical trials investigating the effectiveness of interventions targeting UL functions.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting upper limb compensation during prehension tasks in tetraplegic spinal cord injured patients using a single wearable sensor
Upper limb (UL) compensation is a common strategy of patients with a high spinal cord injury (SCI), i.e., tetraplegic patients, to perform activities of daily living (ADLs) despite their sensorimotor deficits. Currently, an objective and sensitive tool to assess UL compensation, which is applicable in the clinical routine and in the daily life of patients, is missing. In this work, we propose a metric to quantify this compensation using a single inertial measurement unit (IMU). The spread of forearm pitch angles of an IMU attached to the wrist of 17 SCI patients and 18 healthy controls performing six prehension tasks of the graded redefined assessment of strength, sensibility and prehension (GRASSP) was extracted. Using the spread of the forearm pitch angles, a classification of UL compensation was possible with very good to excellent accuracies in all six different prehension tasks. Furthermore, the spread of forearm pitch angles correlated moderately to very strongly with qualitative and quantitative GRASSP prehension scores and the task duration. Therefore, we conclude that our proposed method has a high potential to classify compensation accurately and objectively and might be used to quantify the degree of UL compensation in ADLs. Thus, this method could be implemented in clinical trials investigating the effectiveness of interventions targeting UL functions.