{"title":"物联网LPWA网络中基于NOMA的大规模上行随机接入的低复杂度检测器","authors":"Diane Duchemin, J. Gorce, C. Goursaud","doi":"10.1109/WCNCW.2019.8902806","DOIUrl":null,"url":null,"abstract":"We focus on the random uplink transmissions of an unknown subset of nodes, disseminated in a cell. Under the constraints of massive Machine Type Communication (MTC) in cellular Low Power Wide Area Networks (LPWAN) and Ultra Reliable Low Latency Communications (URLLC), we assume a low coordination with the receiver and the usage of Gaussian coded Non Orthogonal Multiple Access (NOMA). We then target direct data transmission and thus propose a low complexity optimal-based detection of the active users: the It- MAP. This algorithm relies on the Maximum A Posteriori (MAP) detector and, similarly to Orthogonal Matching Pursuit (OMP)- like algorithms, proceeds by iteration to decrease its intrinsic complexity. We also show the gain of employing It-MAP rather than an OMP-based detection and the advantage of exploiting the possibility to tune the algorithm, in order to avoid either Missed Detection or False Alarm, depending on the wished trade-off between the reliability, the latency and the resource usage of the full transmission.","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low complexity Detector for massive uplink random access with NOMA in IoT LPWA networks\",\"authors\":\"Diane Duchemin, J. Gorce, C. Goursaud\",\"doi\":\"10.1109/WCNCW.2019.8902806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on the random uplink transmissions of an unknown subset of nodes, disseminated in a cell. Under the constraints of massive Machine Type Communication (MTC) in cellular Low Power Wide Area Networks (LPWAN) and Ultra Reliable Low Latency Communications (URLLC), we assume a low coordination with the receiver and the usage of Gaussian coded Non Orthogonal Multiple Access (NOMA). We then target direct data transmission and thus propose a low complexity optimal-based detection of the active users: the It- MAP. This algorithm relies on the Maximum A Posteriori (MAP) detector and, similarly to Orthogonal Matching Pursuit (OMP)- like algorithms, proceeds by iteration to decrease its intrinsic complexity. We also show the gain of employing It-MAP rather than an OMP-based detection and the advantage of exploiting the possibility to tune the algorithm, in order to avoid either Missed Detection or False Alarm, depending on the wished trade-off between the reliability, the latency and the resource usage of the full transmission.\",\"PeriodicalId\":121352,\"journal\":{\"name\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2019.8902806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low complexity Detector for massive uplink random access with NOMA in IoT LPWA networks
We focus on the random uplink transmissions of an unknown subset of nodes, disseminated in a cell. Under the constraints of massive Machine Type Communication (MTC) in cellular Low Power Wide Area Networks (LPWAN) and Ultra Reliable Low Latency Communications (URLLC), we assume a low coordination with the receiver and the usage of Gaussian coded Non Orthogonal Multiple Access (NOMA). We then target direct data transmission and thus propose a low complexity optimal-based detection of the active users: the It- MAP. This algorithm relies on the Maximum A Posteriori (MAP) detector and, similarly to Orthogonal Matching Pursuit (OMP)- like algorithms, proceeds by iteration to decrease its intrinsic complexity. We also show the gain of employing It-MAP rather than an OMP-based detection and the advantage of exploiting the possibility to tune the algorithm, in order to avoid either Missed Detection or False Alarm, depending on the wished trade-off between the reliability, the latency and the resource usage of the full transmission.