大数据查询语言的运行时性能优化

Yanbin Liu, Parijat Dube, Scott Gray
{"title":"大数据查询语言的运行时性能优化","authors":"Yanbin Liu, Parijat Dube, Scott Gray","doi":"10.1145/2568088.2576800","DOIUrl":null,"url":null,"abstract":"JAQL is a query language for large-scale data that connects BigData analytics and MapReduce framework together. Also an IBM product, JAQL's performance is critical for IBM InfoSphere BigInsights, a BigData analytics platform. In this paper, we report our work on improving JAQL performance from multiple perspectives. We explore the parallelism of JAQL, profile JAQL for performance analysis, identify I/O as the dominant performance bottleneck, and improve JAQL performance with an emphasis on reducing I/O data size and increasing (de)serialization efficiency. With TPCH benchmark on a simple Hadoop cluster, we report up to 2x performance improvements in JAQL with our optimization fixes.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Run-time performance optimization of a BigData query language\",\"authors\":\"Yanbin Liu, Parijat Dube, Scott Gray\",\"doi\":\"10.1145/2568088.2576800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"JAQL is a query language for large-scale data that connects BigData analytics and MapReduce framework together. Also an IBM product, JAQL's performance is critical for IBM InfoSphere BigInsights, a BigData analytics platform. In this paper, we report our work on improving JAQL performance from multiple perspectives. We explore the parallelism of JAQL, profile JAQL for performance analysis, identify I/O as the dominant performance bottleneck, and improve JAQL performance with an emphasis on reducing I/O data size and increasing (de)serialization efficiency. With TPCH benchmark on a simple Hadoop cluster, we report up to 2x performance improvements in JAQL with our optimization fixes.\",\"PeriodicalId\":243233,\"journal\":{\"name\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568088.2576800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2576800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

JAQL是一种连接BigData分析和MapReduce框架的大规模数据查询语言。JAQL也是一款IBM产品,它的性能对IBM InfoSphere BigInsights(一个大数据分析平台)至关重要。在本文中,我们从多个角度报告了我们在提高JAQL性能方面的工作。我们将探讨JAQL的并行性,对JAQL进行性能分析,确定I/O是主要的性能瓶颈,并通过减少I/O数据大小和提高(反)序列化效率来提高JAQL性能。在一个简单的Hadoop集群上使用TPCH基准测试,我们报告通过我们的优化修复,JAQL的性能提高了2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Run-time performance optimization of a BigData query language
JAQL is a query language for large-scale data that connects BigData analytics and MapReduce framework together. Also an IBM product, JAQL's performance is critical for IBM InfoSphere BigInsights, a BigData analytics platform. In this paper, we report our work on improving JAQL performance from multiple perspectives. We explore the parallelism of JAQL, profile JAQL for performance analysis, identify I/O as the dominant performance bottleneck, and improve JAQL performance with an emphasis on reducing I/O data size and increasing (de)serialization efficiency. With TPCH benchmark on a simple Hadoop cluster, we report up to 2x performance improvements in JAQL with our optimization fixes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信