新生儿热成像自动分割评价躯干热不对称性

Thyago Maia Tavares de Farias, M. Lima, S. Mattos, Juliana Souza S. de Araujo, Lucia Roberta D. N. Mozer, F. Mourato
{"title":"新生儿热成像自动分割评价躯干热不对称性","authors":"Thyago Maia Tavares de Farias, M. Lima, S. Mattos, Juliana Souza S. de Araujo, Lucia Roberta D. N. Mozer, F. Mourato","doi":"10.1109/BIBM.2018.8621553","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for automatic segmentation of neonates’s trunks in thermal images. The method is based on an algorithm that use a threshold, associated with an active contour technique. The hypothesis is that it is possible to correlate a given temperature map, presented in a thermal image, with the persistence of the heart ductus arteriosus of a newborn. From this region of interest (ROI), it is possible to capture quantitative and statistical information on the pathology’s temperature map, in order to use them as input in a machine learning applications to, in addition to aiding early diagnosis, to enable its automation. However, the presence of clothing, bandages, sheets, and other objects during the catches may alter the temperature to be considered in the diagnosis. Thus, in order to guarantee the consistency of the data extracted from such images, the region of interest must be segmented and analyzed separately. The proposed automatic segmentation obtained low error rates, generating outputs very similar to those obtained in manual segmentation.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Segmentation of Neonates Thermal Imaging for Evaluation of Trunk Thermal Asymmetry\",\"authors\":\"Thyago Maia Tavares de Farias, M. Lima, S. Mattos, Juliana Souza S. de Araujo, Lucia Roberta D. N. Mozer, F. Mourato\",\"doi\":\"10.1109/BIBM.2018.8621553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method for automatic segmentation of neonates’s trunks in thermal images. The method is based on an algorithm that use a threshold, associated with an active contour technique. The hypothesis is that it is possible to correlate a given temperature map, presented in a thermal image, with the persistence of the heart ductus arteriosus of a newborn. From this region of interest (ROI), it is possible to capture quantitative and statistical information on the pathology’s temperature map, in order to use them as input in a machine learning applications to, in addition to aiding early diagnosis, to enable its automation. However, the presence of clothing, bandages, sheets, and other objects during the catches may alter the temperature to be considered in the diagnosis. Thus, in order to guarantee the consistency of the data extracted from such images, the region of interest must be segmented and analyzed separately. The proposed automatic segmentation obtained low error rates, generating outputs very similar to those obtained in manual segmentation.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种热图像中新生儿躯干自动分割的新方法。该方法基于一种使用阈值的算法,并与活动轮廓技术相关联。该假说认为,在热图像中呈现的给定的温度图与新生儿心脏动脉导管的持久性之间存在关联是可能的。从这个感兴趣的区域(ROI),可以捕获病理温度图上的定量和统计信息,以便将它们用作机器学习应用程序的输入,除了帮助早期诊断外,还可以实现其自动化。然而,在捕获过程中,衣服、绷带、床单和其他物体的存在可能会改变诊断中考虑的温度。因此,为了保证从这些图像中提取的数据的一致性,必须对感兴趣的区域进行分割和单独分析。所提出的自动分割的错误率很低,产生的输出与人工分割非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Segmentation of Neonates Thermal Imaging for Evaluation of Trunk Thermal Asymmetry
This paper proposes a new method for automatic segmentation of neonates’s trunks in thermal images. The method is based on an algorithm that use a threshold, associated with an active contour technique. The hypothesis is that it is possible to correlate a given temperature map, presented in a thermal image, with the persistence of the heart ductus arteriosus of a newborn. From this region of interest (ROI), it is possible to capture quantitative and statistical information on the pathology’s temperature map, in order to use them as input in a machine learning applications to, in addition to aiding early diagnosis, to enable its automation. However, the presence of clothing, bandages, sheets, and other objects during the catches may alter the temperature to be considered in the diagnosis. Thus, in order to guarantee the consistency of the data extracted from such images, the region of interest must be segmented and analyzed separately. The proposed automatic segmentation obtained low error rates, generating outputs very similar to those obtained in manual segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信