{"title":"集群应用程序基准测试","authors":"Oguz Altun, Nilgun Dursunoglu, M. Amasyali","doi":"10.1109/IISWC.2006.302742","DOIUrl":null,"url":null,"abstract":"An application benchmark based on a set of clustering algorithms is described in this paper. The details of algorithms (K-means online, K-means batch, SOM-1 dimension, SOM-2 dimension, hierarchical K-means online and hierarchical SOM-1 dimension) are given. The code provided complies with ANSI C specifications, as a result is highly portable. The benchmark has been tested on various platforms using different compilers","PeriodicalId":222041,"journal":{"name":"2006 IEEE International Symposium on Workload Characterization","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Clustering Application Benchmark\",\"authors\":\"Oguz Altun, Nilgun Dursunoglu, M. Amasyali\",\"doi\":\"10.1109/IISWC.2006.302742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application benchmark based on a set of clustering algorithms is described in this paper. The details of algorithms (K-means online, K-means batch, SOM-1 dimension, SOM-2 dimension, hierarchical K-means online and hierarchical SOM-1 dimension) are given. The code provided complies with ANSI C specifications, as a result is highly portable. The benchmark has been tested on various platforms using different compilers\",\"PeriodicalId\":222041,\"journal\":{\"name\":\"2006 IEEE International Symposium on Workload Characterization\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Workload Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2006.302742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2006.302742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An application benchmark based on a set of clustering algorithms is described in this paper. The details of algorithms (K-means online, K-means batch, SOM-1 dimension, SOM-2 dimension, hierarchical K-means online and hierarchical SOM-1 dimension) are given. The code provided complies with ANSI C specifications, as a result is highly portable. The benchmark has been tested on various platforms using different compilers