通过DBpedia的不同视角对主题进行探索性搜索

Nicolas Marie, Fabien L. Gandon, A. Giboin, Émilie Palagi
{"title":"通过DBpedia的不同视角对主题进行探索性搜索","authors":"Nicolas Marie, Fabien L. Gandon, A. Giboin, Émilie Palagi","doi":"10.1145/2660517.2660518","DOIUrl":null,"url":null,"abstract":"A promising scenario for combining linked data and search is exploratory search. During exploratory search, the search objective is ill-defined and favorable to discovery. A common limit of the existing linked data based exploratory search systems is that they constrain the exploration through single results selection and ranking schemes. The users can not influence the results to reveal specific aspects of knowledge that interest them. The models and algorithms we propose unveil such knowledge nuances by allowing the exploration of topics through several perspectives. The users adjust important computation parameters through three operations that help retrieving desired exploration perspectives: specification of interest criteria about the topic explored, controlled randomness injection to reveal unexpected knowledge and choice of the processed knowledge source(s). This paper describes the corresponding models, algorithms and the Discovery Hub implementation. It focuses on the three mentioned operations and presents their evaluations.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"18 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Exploratory search on topics through different perspectives with DBpedia\",\"authors\":\"Nicolas Marie, Fabien L. Gandon, A. Giboin, Émilie Palagi\",\"doi\":\"10.1145/2660517.2660518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising scenario for combining linked data and search is exploratory search. During exploratory search, the search objective is ill-defined and favorable to discovery. A common limit of the existing linked data based exploratory search systems is that they constrain the exploration through single results selection and ranking schemes. The users can not influence the results to reveal specific aspects of knowledge that interest them. The models and algorithms we propose unveil such knowledge nuances by allowing the exploration of topics through several perspectives. The users adjust important computation parameters through three operations that help retrieving desired exploration perspectives: specification of interest criteria about the topic explored, controlled randomness injection to reveal unexpected knowledge and choice of the processed knowledge source(s). This paper describes the corresponding models, algorithms and the Discovery Hub implementation. It focuses on the three mentioned operations and presents their evaluations.\",\"PeriodicalId\":344435,\"journal\":{\"name\":\"Joint Conference on Lexical and Computational Semantics\",\"volume\":\"18 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Conference on Lexical and Computational Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2660517.2660518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660517.2660518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

结合关联数据和搜索的一个很有前景的场景是探索性搜索。在探索性搜索中,搜索目标不明确,有利于发现。现有的基于关联数据的探索性搜索系统的一个共同限制是,它们通过单一的结果选择和排序方案来限制探索。用户不能影响结果来揭示他们感兴趣的知识的特定方面。我们提出的模型和算法通过允许从几个角度探索主题来揭示这些知识的细微差别。用户通过三种操作来调整重要的计算参数,这些操作有助于检索期望的探索视角:指定关于所探索主题的兴趣标准,受控的随机性注入以揭示意外知识,以及选择已处理的知识来源。本文介绍了相应的模型、算法和Discovery Hub的实现。它着重介绍了上述三个行动,并提出了对它们的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploratory search on topics through different perspectives with DBpedia
A promising scenario for combining linked data and search is exploratory search. During exploratory search, the search objective is ill-defined and favorable to discovery. A common limit of the existing linked data based exploratory search systems is that they constrain the exploration through single results selection and ranking schemes. The users can not influence the results to reveal specific aspects of knowledge that interest them. The models and algorithms we propose unveil such knowledge nuances by allowing the exploration of topics through several perspectives. The users adjust important computation parameters through three operations that help retrieving desired exploration perspectives: specification of interest criteria about the topic explored, controlled randomness injection to reveal unexpected knowledge and choice of the processed knowledge source(s). This paper describes the corresponding models, algorithms and the Discovery Hub implementation. It focuses on the three mentioned operations and presents their evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信