einstein - 4流形的非坍缩退化,2

Tristan Ozuch
{"title":"einstein - 4流形的非坍缩退化,2","authors":"Tristan Ozuch","doi":"10.2140/gt.2022.26.1529","DOIUrl":null,"url":null,"abstract":"A theorem of Anderson and Bando-Kasue-Nakajima from 1989 states that to compactify the set of normalized Einstein metrics with a lower bound on the volume and an upper bound on the diameter in the Gromov-Hausdorff sense, one has to add singular spaces called Einstein orbifolds, and the singularities form as blow-downs of Ricci-flat ALE spaces. This raises some natural issues, in particular: can all Einstein orbifolds be Gromov-Hausdorff limits of smooth Einstein manifolds? Can we describe more precisely the smooth Einstein metrics close to a given singular one? In this first paper, we prove that Einstein manifolds sufficiently close, in the Gromov-Hausdorff sense, to an orbifold are actually close to a gluing of model spaces in suitable weighted Holder spaces. The proof consists in controlling the metric in the neck regions thanks to the construction of optimal coordinates. This refined convergence is the cornerstone of our subsequent work on the degeneration of Einstein metrics or, equivalently, on the desingularization of Einstein orbifolds in which we show that all Einstein metrics Gromov-Hausdorff close to an Einstein orbifold are the result of a gluing-perturbation procedure. This procedure turns out to be generally obstructed, and this provides the first obstructions to a Gromov-Hausdorff desingularization of Einstein orbifolds.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Noncollapsed degeneration of Einstein\\n4–manifolds, II\",\"authors\":\"Tristan Ozuch\",\"doi\":\"10.2140/gt.2022.26.1529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theorem of Anderson and Bando-Kasue-Nakajima from 1989 states that to compactify the set of normalized Einstein metrics with a lower bound on the volume and an upper bound on the diameter in the Gromov-Hausdorff sense, one has to add singular spaces called Einstein orbifolds, and the singularities form as blow-downs of Ricci-flat ALE spaces. This raises some natural issues, in particular: can all Einstein orbifolds be Gromov-Hausdorff limits of smooth Einstein manifolds? Can we describe more precisely the smooth Einstein metrics close to a given singular one? In this first paper, we prove that Einstein manifolds sufficiently close, in the Gromov-Hausdorff sense, to an orbifold are actually close to a gluing of model spaces in suitable weighted Holder spaces. The proof consists in controlling the metric in the neck regions thanks to the construction of optimal coordinates. This refined convergence is the cornerstone of our subsequent work on the degeneration of Einstein metrics or, equivalently, on the desingularization of Einstein orbifolds in which we show that all Einstein metrics Gromov-Hausdorff close to an Einstein orbifold are the result of a gluing-perturbation procedure. This procedure turns out to be generally obstructed, and this provides the first obstructions to a Gromov-Hausdorff desingularization of Einstein orbifolds.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.1529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

1989年Anderson和Bando-Kasue-Nakajima的一个定理指出,为了紧化格罗莫夫-豪斯多夫意义上具有体积下界和直径上界的归一化爱因斯坦度量集,必须添加称为爱因斯坦轨道的奇异空间,并且奇点形式为ricci -平坦ALE空间的落。这就引出了一些自然的问题,特别是:是否所有的爱因斯坦轨道都是光滑爱因斯坦流形的Gromov-Hausdorff极限?我们能否更精确地描述接近给定奇异度规的光滑爱因斯坦度规?在第一篇论文中,我们证明了爱因斯坦流形在Gromov-Hausdorff意义上与一个轨道足够接近,实际上是在合适的加权Holder空间中接近模型空间的胶合。通过构造最优坐标来控制颈部区域的度规。这种精细的收敛性是我们关于爱因斯坦度量退化的后续工作的基石,或者等价地,关于爱因斯坦轨道的去具体化,我们证明了所有接近爱因斯坦轨道的爱因斯坦度量Gromov-Hausdorff都是胶摄过程的结果。这一过程被证明是普遍受阻的,这为爱因斯坦轨道的格罗莫夫-豪斯多夫去广化提供了第一个障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncollapsed degeneration of Einstein 4–manifolds, II
A theorem of Anderson and Bando-Kasue-Nakajima from 1989 states that to compactify the set of normalized Einstein metrics with a lower bound on the volume and an upper bound on the diameter in the Gromov-Hausdorff sense, one has to add singular spaces called Einstein orbifolds, and the singularities form as blow-downs of Ricci-flat ALE spaces. This raises some natural issues, in particular: can all Einstein orbifolds be Gromov-Hausdorff limits of smooth Einstein manifolds? Can we describe more precisely the smooth Einstein metrics close to a given singular one? In this first paper, we prove that Einstein manifolds sufficiently close, in the Gromov-Hausdorff sense, to an orbifold are actually close to a gluing of model spaces in suitable weighted Holder spaces. The proof consists in controlling the metric in the neck regions thanks to the construction of optimal coordinates. This refined convergence is the cornerstone of our subsequent work on the degeneration of Einstein metrics or, equivalently, on the desingularization of Einstein orbifolds in which we show that all Einstein metrics Gromov-Hausdorff close to an Einstein orbifold are the result of a gluing-perturbation procedure. This procedure turns out to be generally obstructed, and this provides the first obstructions to a Gromov-Hausdorff desingularization of Einstein orbifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信