使用深度学习从源代码生成伪代码

Abdulaziz Alhefdhi, K. Dam, Hideaki Hata, A. Ghose
{"title":"使用深度学习从源代码生成伪代码","authors":"Abdulaziz Alhefdhi, K. Dam, Hideaki Hata, A. Ghose","doi":"10.1109/ASWEC.2018.00011","DOIUrl":null,"url":null,"abstract":"Pseudo-code written in natural language and mathematical expressions is a useful description of source code. Pseudocode aids programmers in understanding the code written in a programming language they are not familiar with. However, writing pseudo-code for each code statement is labour intensive. In this paper, we propose a novel approach to automatically generate pseudo-code from source code using Neural Machine Translation. Our model is built upon the deep learning encoderdecoder using the attention-based Long Short-Term Memory architecture to capture the long-term dependencies in both source code and pseudo-code. An empirical evaluation on a real Python dataset demonstrates the applicability of our approach in practice.","PeriodicalId":331846,"journal":{"name":"2018 25th Australasian Software Engineering Conference (ASWEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Generating Pseudo-Code from Source Code Using Deep Learning\",\"authors\":\"Abdulaziz Alhefdhi, K. Dam, Hideaki Hata, A. Ghose\",\"doi\":\"10.1109/ASWEC.2018.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo-code written in natural language and mathematical expressions is a useful description of source code. Pseudocode aids programmers in understanding the code written in a programming language they are not familiar with. However, writing pseudo-code for each code statement is labour intensive. In this paper, we propose a novel approach to automatically generate pseudo-code from source code using Neural Machine Translation. Our model is built upon the deep learning encoderdecoder using the attention-based Long Short-Term Memory architecture to capture the long-term dependencies in both source code and pseudo-code. An empirical evaluation on a real Python dataset demonstrates the applicability of our approach in practice.\",\"PeriodicalId\":331846,\"journal\":{\"name\":\"2018 25th Australasian Software Engineering Conference (ASWEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 25th Australasian Software Engineering Conference (ASWEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASWEC.2018.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th Australasian Software Engineering Conference (ASWEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASWEC.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

用自然语言和数学表达式编写的伪代码是源代码的有用描述。伪代码帮助程序员理解用他们不熟悉的编程语言编写的代码。然而,为每个代码语句编写伪代码是一项劳动密集型工作。本文提出了一种利用神经机器翻译从源代码自动生成伪代码的新方法。我们的模型建立在深度学习编码器的基础上,使用基于注意力的长短期记忆架构来捕获源代码和伪代码中的长期依赖关系。对真实Python数据集的经验评估证明了我们的方法在实践中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Pseudo-Code from Source Code Using Deep Learning
Pseudo-code written in natural language and mathematical expressions is a useful description of source code. Pseudocode aids programmers in understanding the code written in a programming language they are not familiar with. However, writing pseudo-code for each code statement is labour intensive. In this paper, we propose a novel approach to automatically generate pseudo-code from source code using Neural Machine Translation. Our model is built upon the deep learning encoderdecoder using the attention-based Long Short-Term Memory architecture to capture the long-term dependencies in both source code and pseudo-code. An empirical evaluation on a real Python dataset demonstrates the applicability of our approach in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信