手势热图:用彩色可视化理解手势性能

Radu-Daniel Vatavu, Lisa Anthony, J. Wobbrock
{"title":"手势热图:用彩色可视化理解手势性能","authors":"Radu-Daniel Vatavu, Lisa Anthony, J. Wobbrock","doi":"10.1145/2663204.2663256","DOIUrl":null,"url":null,"abstract":"We introduce gesture heatmaps, a novel gesture analysis technique that employs color maps to visualize the variation of local features along the gesture path. Beyond current gesture analysis practices that characterize gesture articulations with single-value descriptors, e.g., size, path length, or speed, gesture heatmaps are able to show with colorful visualizations how the value of any such descriptors vary along the gesture path. We evaluate gesture heatmaps on three public datasets comprising 15,840 gesture samples of 70 gesture types from 45 participants, on which we demonstrate heatmaps' capabilities to (1) explain causes for recognition errors, (2) characterize users' gesture articulation patterns under various conditions, e.g., finger versus pen gestures, and (3) help understand users' subjective perceptions of gesture commands, such as why some gestures are perceived easier to execute than others. We also introduce chromatic confusion matrices that employ gesture heatmaps to extend the expressiveness of standard confusion matrices to better understand gesture classification performance. We believe that gesture heatmaps will prove useful to researchers and practitioners doing gesture analysis, and consequently, they will inform the design of better gesture sets and development of more accurate recognizers.","PeriodicalId":389037,"journal":{"name":"Proceedings of the 16th International Conference on Multimodal Interaction","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Gesture Heatmaps: Understanding Gesture Performance with Colorful Visualizations\",\"authors\":\"Radu-Daniel Vatavu, Lisa Anthony, J. Wobbrock\",\"doi\":\"10.1145/2663204.2663256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce gesture heatmaps, a novel gesture analysis technique that employs color maps to visualize the variation of local features along the gesture path. Beyond current gesture analysis practices that characterize gesture articulations with single-value descriptors, e.g., size, path length, or speed, gesture heatmaps are able to show with colorful visualizations how the value of any such descriptors vary along the gesture path. We evaluate gesture heatmaps on three public datasets comprising 15,840 gesture samples of 70 gesture types from 45 participants, on which we demonstrate heatmaps' capabilities to (1) explain causes for recognition errors, (2) characterize users' gesture articulation patterns under various conditions, e.g., finger versus pen gestures, and (3) help understand users' subjective perceptions of gesture commands, such as why some gestures are perceived easier to execute than others. We also introduce chromatic confusion matrices that employ gesture heatmaps to extend the expressiveness of standard confusion matrices to better understand gesture classification performance. We believe that gesture heatmaps will prove useful to researchers and practitioners doing gesture analysis, and consequently, they will inform the design of better gesture sets and development of more accurate recognizers.\",\"PeriodicalId\":389037,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Multimodal Interaction\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663204.2663256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663204.2663256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们介绍了一种新的手势分析技术——手势热图,它使用颜色图来可视化沿手势路径的局部特征的变化。除了目前用单值描述符(如大小、路径长度或速度)来描述手势发音的手势分析实践之外,手势热图能够以彩色的可视化方式显示任何此类描述符的值如何沿着手势路径变化。我们在三个公共数据集上评估了手势热图,这些数据集包括来自45名参与者的70种手势类型的15,840个手势样本,在这些数据集上,我们展示了热图的能力:(1)解释识别错误的原因,(2)表征用户在各种条件下的手势发音模式,例如手指手势与笔手势,以及(3)帮助理解用户对手势命令的主观感知,例如为什么有些手势被认为比其他手势更容易执行。我们还引入了使用手势热图的色混淆矩阵来扩展标准混淆矩阵的表达性,以更好地理解手势分类性能。我们相信,手势热图将被证明对研究人员和实践者进行手势分析是有用的,因此,它们将为设计更好的手势集和开发更准确的识别器提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gesture Heatmaps: Understanding Gesture Performance with Colorful Visualizations
We introduce gesture heatmaps, a novel gesture analysis technique that employs color maps to visualize the variation of local features along the gesture path. Beyond current gesture analysis practices that characterize gesture articulations with single-value descriptors, e.g., size, path length, or speed, gesture heatmaps are able to show with colorful visualizations how the value of any such descriptors vary along the gesture path. We evaluate gesture heatmaps on three public datasets comprising 15,840 gesture samples of 70 gesture types from 45 participants, on which we demonstrate heatmaps' capabilities to (1) explain causes for recognition errors, (2) characterize users' gesture articulation patterns under various conditions, e.g., finger versus pen gestures, and (3) help understand users' subjective perceptions of gesture commands, such as why some gestures are perceived easier to execute than others. We also introduce chromatic confusion matrices that employ gesture heatmaps to extend the expressiveness of standard confusion matrices to better understand gesture classification performance. We believe that gesture heatmaps will prove useful to researchers and practitioners doing gesture analysis, and consequently, they will inform the design of better gesture sets and development of more accurate recognizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信