基于自适应颜色分割和深度学习的道路交通标志检测与识别

Roozbeh KhabiriKhatiri, I. A. Latiff, Ahmad Sabry Mohamad
{"title":"基于自适应颜色分割和深度学习的道路交通标志检测与识别","authors":"Roozbeh KhabiriKhatiri, I. A. Latiff, Ahmad Sabry Mohamad","doi":"10.1109/ICSIPA52582.2021.9576798","DOIUrl":null,"url":null,"abstract":"Traffic sign detection and recognition (TSDR) is one of the main area of research in autonomous vehicles and Advanced Driving Assistance System (ADAS). In this paper a method is proposed to detect and classify the prohibitory subset of German Traffic Sign data set. The traffic sign detection module utilizes adaptive color segmentation based on mean saturation value of local neighborhood, and Circular Hough Transform (CHT) to locate the traffic signs in the input images. Adaptive color thresholding shows improvement in segmenting traffic signs where images have uneven lighting or very high or low contrast levels, compared to global thresholding. Furthermore, number of false alarms are minimized by utilizing an additional validation stage. For the recognition phase of the algorithm, multiple deep Convolutional Neural Networks (CNN) with different structures are developed from scratch to compare their performance and identify the network with highest accuracy.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Road Traffic Sign Detection and Recognition using Adaptive Color Segmentation and Deep Learning\",\"authors\":\"Roozbeh KhabiriKhatiri, I. A. Latiff, Ahmad Sabry Mohamad\",\"doi\":\"10.1109/ICSIPA52582.2021.9576798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic sign detection and recognition (TSDR) is one of the main area of research in autonomous vehicles and Advanced Driving Assistance System (ADAS). In this paper a method is proposed to detect and classify the prohibitory subset of German Traffic Sign data set. The traffic sign detection module utilizes adaptive color segmentation based on mean saturation value of local neighborhood, and Circular Hough Transform (CHT) to locate the traffic signs in the input images. Adaptive color thresholding shows improvement in segmenting traffic signs where images have uneven lighting or very high or low contrast levels, compared to global thresholding. Furthermore, number of false alarms are minimized by utilizing an additional validation stage. For the recognition phase of the algorithm, multiple deep Convolutional Neural Networks (CNN) with different structures are developed from scratch to compare their performance and identify the network with highest accuracy.\",\"PeriodicalId\":326688,\"journal\":{\"name\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA52582.2021.9576798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交通标志检测与识别(TSDR)是自动驾驶汽车和高级驾驶辅助系统(ADAS)的主要研究领域之一。本文提出了一种检测和分类德国交通标志数据集禁止子集的方法。交通标志检测模块采用基于局部邻域平均饱和值的自适应颜色分割,并结合循环霍夫变换(Circular Hough Transform, CHT)对输入图像中的交通标志进行定位。与全局阈值相比,自适应颜色阈值在图像光照不均匀或对比度非常高或非常低的交通标志分割方面显示出改进。此外,通过使用额外的验证阶段,可以最大限度地减少假警报的数量。在算法的识别阶段,从零开始开发多个不同结构的深度卷积神经网络(CNN),比较它们的性能,识别出准确率最高的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road Traffic Sign Detection and Recognition using Adaptive Color Segmentation and Deep Learning
Traffic sign detection and recognition (TSDR) is one of the main area of research in autonomous vehicles and Advanced Driving Assistance System (ADAS). In this paper a method is proposed to detect and classify the prohibitory subset of German Traffic Sign data set. The traffic sign detection module utilizes adaptive color segmentation based on mean saturation value of local neighborhood, and Circular Hough Transform (CHT) to locate the traffic signs in the input images. Adaptive color thresholding shows improvement in segmenting traffic signs where images have uneven lighting or very high or low contrast levels, compared to global thresholding. Furthermore, number of false alarms are minimized by utilizing an additional validation stage. For the recognition phase of the algorithm, multiple deep Convolutional Neural Networks (CNN) with different structures are developed from scratch to compare their performance and identify the network with highest accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信