结合相关核和感性信息的KCCA面部表情识别

Yoshimasa Horikawa
{"title":"结合相关核和感性信息的KCCA面部表情识别","authors":"Yoshimasa Horikawa","doi":"10.1109/ICCSA.2007.78","DOIUrl":null,"url":null,"abstract":"Kernel canonical correlation analysis (kCCA) with combining correlation kernels of multiple-orders and Kansei information is applied to facial expression recognition. Any explicit feature extraction is done and spatial correlation features of image data are implicitly incorporated in the correlation kernels. Further, Kansei information is included as the second feature in kCCA. Classification experiments with JAFFE database show that, although the use of Kansei information in itself gives lower classification performance than class indicators optimal for classification tasks, combining Kansei information with them makes the classification performance higher than the only use of the indicators.","PeriodicalId":386960,"journal":{"name":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Facial Expression Recognition using KCCA with Combining Correlation Kernels and Kansei Information\",\"authors\":\"Yoshimasa Horikawa\",\"doi\":\"10.1109/ICCSA.2007.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel canonical correlation analysis (kCCA) with combining correlation kernels of multiple-orders and Kansei information is applied to facial expression recognition. Any explicit feature extraction is done and spatial correlation features of image data are implicitly incorporated in the correlation kernels. Further, Kansei information is included as the second feature in kCCA. Classification experiments with JAFFE database show that, although the use of Kansei information in itself gives lower classification performance than class indicators optimal for classification tasks, combining Kansei information with them makes the classification performance higher than the only use of the indicators.\",\"PeriodicalId\":386960,\"journal\":{\"name\":\"2007 International Conference on Computational Science and its Applications (ICCSA 2007)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Science and its Applications (ICCSA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2007.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2007.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

将多阶相关核与感性信息相结合的核典型相关分析(kCCA)应用于面部表情识别。对图像数据进行显式特征提取,并隐式地将空间相关特征整合到相关核中。此外,感性信息是kCCA的第二个特征。使用JAFFE数据库进行的分类实验表明,虽然单独使用感性信息对分类任务的分类性能不如最优的类指标,但将感性信息与类指标结合使用,分类性能要高于单独使用类指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Expression Recognition using KCCA with Combining Correlation Kernels and Kansei Information
Kernel canonical correlation analysis (kCCA) with combining correlation kernels of multiple-orders and Kansei information is applied to facial expression recognition. Any explicit feature extraction is done and spatial correlation features of image data are implicitly incorporated in the correlation kernels. Further, Kansei information is included as the second feature in kCCA. Classification experiments with JAFFE database show that, although the use of Kansei information in itself gives lower classification performance than class indicators optimal for classification tasks, combining Kansei information with them makes the classification performance higher than the only use of the indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信