睡眠阶段分类中的深度学习

Mohamed H. Al-Meer, M. Mamun
{"title":"睡眠阶段分类中的深度学习","authors":"Mohamed H. Al-Meer, M. Mamun","doi":"10.1109/ICDIM.2018.8846973","DOIUrl":null,"url":null,"abstract":"This paper presents a deep feed-forward neural network classifier to automatically classify the stages of sleep using raw data taken from a single electropalatogram channel (Fpz-Cz). No features are extracted at all from the data, and the network can classify the five sleep stages: waking, Nl, N2, N3, N4, and rapid eye movement. The network has three layers, takes as an input a l-s epochs to be classified, and requires no signal pre-processing nor feature extraction. We trained and evaluated our system using DeepLearning4J, the free Java framework for test data taken from PhysioNet’s Polysomnography Sleep database. An accuracy of 0.99 within a constrained environment has been reached.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning in Classifying Sleep Stages\",\"authors\":\"Mohamed H. Al-Meer, M. Mamun\",\"doi\":\"10.1109/ICDIM.2018.8846973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep feed-forward neural network classifier to automatically classify the stages of sleep using raw data taken from a single electropalatogram channel (Fpz-Cz). No features are extracted at all from the data, and the network can classify the five sleep stages: waking, Nl, N2, N3, N4, and rapid eye movement. The network has three layers, takes as an input a l-s epochs to be classified, and requires no signal pre-processing nor feature extraction. We trained and evaluated our system using DeepLearning4J, the free Java framework for test data taken from PhysioNet’s Polysomnography Sleep database. An accuracy of 0.99 within a constrained environment has been reached.\",\"PeriodicalId\":120884,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2018.8846973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8846973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种深度前馈神经网络分类器,该分类器利用单个电腭图通道(Fpz-Cz)的原始数据对睡眠阶段进行自动分类。没有从数据中提取任何特征,网络可以将睡眠分为清醒、n1、N2、N3、N4和快速眼动五个阶段。该网络有三层,以l-s个epoch作为输入进行分类,不需要信号预处理,也不需要特征提取。我们使用DeepLearning4J来训练和评估我们的系统,DeepLearning4J是一个免费的Java框架,用于从PhysioNet的Polysomnography Sleep数据库中获取测试数据。在受限环境下的精度达到了0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning in Classifying Sleep Stages
This paper presents a deep feed-forward neural network classifier to automatically classify the stages of sleep using raw data taken from a single electropalatogram channel (Fpz-Cz). No features are extracted at all from the data, and the network can classify the five sleep stages: waking, Nl, N2, N3, N4, and rapid eye movement. The network has three layers, takes as an input a l-s epochs to be classified, and requires no signal pre-processing nor feature extraction. We trained and evaluated our system using DeepLearning4J, the free Java framework for test data taken from PhysioNet’s Polysomnography Sleep database. An accuracy of 0.99 within a constrained environment has been reached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信