从少量标准正交基测量中恢复低秩矩阵

R. Kueng
{"title":"从少量标准正交基测量中恢复低秩矩阵","authors":"R. Kueng","doi":"10.1109/SAMPTA.2015.7148921","DOIUrl":null,"url":null,"abstract":"Recent insights concerning the PhaseLift algorithm for retrieving phases have furthered our understanding of low rank matrix recovery from rank-one projective measurements. Motivated by the structure of certain quantum mechanical experiments, we introduce a particular class of such rank-one measurements: orthonormal basis measurements. One such measurement corresponds to choosing an orthonormal basis and treating all the rank-one projectors onto different basis elements as a series of consecutive measurement matrices. We elaborate on performing low-rank matrix recovery from few, sufficiently random orthonormal basis measurements and sketch applications of such a procedure in quantum physics. We conclude this article by presenting numerical experiments testing such an approach.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Low rank matrix recovery from few orthonormal basis measurements\",\"authors\":\"R. Kueng\",\"doi\":\"10.1109/SAMPTA.2015.7148921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent insights concerning the PhaseLift algorithm for retrieving phases have furthered our understanding of low rank matrix recovery from rank-one projective measurements. Motivated by the structure of certain quantum mechanical experiments, we introduce a particular class of such rank-one measurements: orthonormal basis measurements. One such measurement corresponds to choosing an orthonormal basis and treating all the rank-one projectors onto different basis elements as a series of consecutive measurement matrices. We elaborate on performing low-rank matrix recovery from few, sufficiently random orthonormal basis measurements and sketch applications of such a procedure in quantum physics. We conclude this article by presenting numerical experiments testing such an approach.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

最近关于相位检索的PhaseLift算法的见解进一步加深了我们对从秩一投影测量中恢复低秩矩阵的理解。受某些量子力学实验结构的启发,我们引入了一类特殊的秩一测量:标准正交基测量。一个这样的测量对应于选择一个标准正交基,并将所有到不同基元素上的第一阶投影处理为一系列连续的测量矩阵。我们详细阐述了从少量,足够随机的标准正交基测量中执行低秩矩阵恢复,并概述了这种过程在量子物理中的应用。在本文的最后,我们提出了测试这种方法的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low rank matrix recovery from few orthonormal basis measurements
Recent insights concerning the PhaseLift algorithm for retrieving phases have furthered our understanding of low rank matrix recovery from rank-one projective measurements. Motivated by the structure of certain quantum mechanical experiments, we introduce a particular class of such rank-one measurements: orthonormal basis measurements. One such measurement corresponds to choosing an orthonormal basis and treating all the rank-one projectors onto different basis elements as a series of consecutive measurement matrices. We elaborate on performing low-rank matrix recovery from few, sufficiently random orthonormal basis measurements and sketch applications of such a procedure in quantum physics. We conclude this article by presenting numerical experiments testing such an approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信