基于集成学习分类器的藏文文本分类研究

Ling Ailin, Yu Hongzhi, Yuan Bin
{"title":"基于集成学习分类器的藏文文本分类研究","authors":"Ling Ailin, Yu Hongzhi, Yuan Bin","doi":"10.1109/IAEAC.2015.7428520","DOIUrl":null,"url":null,"abstract":"Based on the text feature and syntatic structure of Tibetan, this theory mainly focuses on categorization of Tibetan through ensemble learning classified method. Combine KNN and Naive Bayesian to build a basic classifier on account of three character subsets over category of word character. And then take weighted calculation of basic classifier. For the last step, calculate the weight of basic classifier via gradient descend and reach final result of categorization. During experiment, choose recall ratio, precision ratio as well as other evaluation function to analyze and evaluate KNN, Naive Bayesian and text categorization. Conclusion from experiment shows that precision of calculation of Tibetan text based on ensemble learning method has been greatly improved.","PeriodicalId":398100,"journal":{"name":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Tibetan text categorization based on ensemble learning classifier\",\"authors\":\"Ling Ailin, Yu Hongzhi, Yuan Bin\",\"doi\":\"10.1109/IAEAC.2015.7428520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the text feature and syntatic structure of Tibetan, this theory mainly focuses on categorization of Tibetan through ensemble learning classified method. Combine KNN and Naive Bayesian to build a basic classifier on account of three character subsets over category of word character. And then take weighted calculation of basic classifier. For the last step, calculate the weight of basic classifier via gradient descend and reach final result of categorization. During experiment, choose recall ratio, precision ratio as well as other evaluation function to analyze and evaluate KNN, Naive Bayesian and text categorization. Conclusion from experiment shows that precision of calculation of Tibetan text based on ensemble learning method has been greatly improved.\",\"PeriodicalId\":398100,\"journal\":{\"name\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2015.7428520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2015.7428520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该理论基于藏文的文本特征和句法结构,主要通过集成学习分类方法对藏文进行分类。结合KNN和朴素贝叶斯,基于三个字符子集在词字符类别上建立一个基本分类器。然后对基本分类器进行加权计算。最后一步,通过梯度下降计算基本分类器的权值,得到最终的分类结果。在实验中,选择召回率、准确率等评价函数对KNN、朴素贝叶斯和文本分类进行分析和评价。实验结果表明,基于集成学习方法的藏文文本计算精度有了很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Tibetan text categorization based on ensemble learning classifier
Based on the text feature and syntatic structure of Tibetan, this theory mainly focuses on categorization of Tibetan through ensemble learning classified method. Combine KNN and Naive Bayesian to build a basic classifier on account of three character subsets over category of word character. And then take weighted calculation of basic classifier. For the last step, calculate the weight of basic classifier via gradient descend and reach final result of categorization. During experiment, choose recall ratio, precision ratio as well as other evaluation function to analyze and evaluate KNN, Naive Bayesian and text categorization. Conclusion from experiment shows that precision of calculation of Tibetan text based on ensemble learning method has been greatly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信