瞳孔扩张指标对刺激分布不确定性的统计学习

Francesco Silvestrin, Thomas H. B. FitzGerald, W. Penny
{"title":"瞳孔扩张指标对刺激分布不确定性的统计学习","authors":"Francesco Silvestrin, Thomas H. B. FitzGerald, W. Penny","doi":"10.32470/ccn.2019.1110-0","DOIUrl":null,"url":null,"abstract":"Learning about the uncertainty of environmental stimuli is a fundamental requirement of adaptive behaviour. In this experiment we probe whether pupil dilation in response to brief auditory stimuli reflects statistical learning about the underlying stimulus distributions. Specifically, we consider whether pupil dilation reflects automatic (task-irrelevant) learning about the precision of Gaussian distributions of tones. By comparing responses to perceptually identical outlier and standard tones in low and high precision blocks, we provide clear evidence that subjects do indeed learn about precision, as reflected by increased responses to surprising (outlier) tones during high precision blocks. This extends previous work looking at electrophysiological effects of precision learning, and provides new evidence that the putatively noradrenergic processes underlying pupil dilation reflect learning about the uncertainty of stimulus distributions. In addition, we use our data to test a new convolution-based approach for analysing pupillometry data, which we believe has considerable promise for this and future studies.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pupil dilation indexes statistical learning about the uncertainty of stimulus distributions\",\"authors\":\"Francesco Silvestrin, Thomas H. B. FitzGerald, W. Penny\",\"doi\":\"10.32470/ccn.2019.1110-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning about the uncertainty of environmental stimuli is a fundamental requirement of adaptive behaviour. In this experiment we probe whether pupil dilation in response to brief auditory stimuli reflects statistical learning about the underlying stimulus distributions. Specifically, we consider whether pupil dilation reflects automatic (task-irrelevant) learning about the precision of Gaussian distributions of tones. By comparing responses to perceptually identical outlier and standard tones in low and high precision blocks, we provide clear evidence that subjects do indeed learn about precision, as reflected by increased responses to surprising (outlier) tones during high precision blocks. This extends previous work looking at electrophysiological effects of precision learning, and provides new evidence that the putatively noradrenergic processes underlying pupil dilation reflect learning about the uncertainty of stimulus distributions. In addition, we use our data to test a new convolution-based approach for analysing pupillometry data, which we believe has considerable promise for this and future studies.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1110-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1110-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解环境刺激的不确定性是适应行为的基本要求。在这个实验中,我们探讨瞳孔扩张对简短的听觉刺激的反应是否反映了对潜在刺激分布的统计学习。具体来说,我们考虑瞳孔扩张是否反映了对音调高斯分布精度的自动(与任务无关的)学习。通过比较在低精度和高精度区域对感知上相同的异常音调和标准音调的反应,我们提供了明确的证据,表明受试者确实学习了精度,这反映在高精度区域对令人惊讶的(异常)音调的反应增加。这项研究扩展了先前关于精确学习的电生理效应的研究,并提供了新的证据,证明瞳孔扩张背后的去肾上腺素能过程反映了对刺激分布不确定性的学习。此外,我们使用我们的数据来测试一种新的基于卷积的方法来分析瞳孔测量数据,我们相信这种方法在本研究和未来的研究中具有相当大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pupil dilation indexes statistical learning about the uncertainty of stimulus distributions
Learning about the uncertainty of environmental stimuli is a fundamental requirement of adaptive behaviour. In this experiment we probe whether pupil dilation in response to brief auditory stimuli reflects statistical learning about the underlying stimulus distributions. Specifically, we consider whether pupil dilation reflects automatic (task-irrelevant) learning about the precision of Gaussian distributions of tones. By comparing responses to perceptually identical outlier and standard tones in low and high precision blocks, we provide clear evidence that subjects do indeed learn about precision, as reflected by increased responses to surprising (outlier) tones during high precision blocks. This extends previous work looking at electrophysiological effects of precision learning, and provides new evidence that the putatively noradrenergic processes underlying pupil dilation reflect learning about the uncertainty of stimulus distributions. In addition, we use our data to test a new convolution-based approach for analysing pupillometry data, which we believe has considerable promise for this and future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信