森林环境中飞行器状态估计

Antonio C. B. Chiella, B. Teixeira, G. Pereira
{"title":"森林环境中飞行器状态估计","authors":"Antonio C. B. Chiella, B. Teixeira, G. Pereira","doi":"10.1109/ICUAS.2019.8797822","DOIUrl":null,"url":null,"abstract":"Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"State Estimation for Aerial Vehicles in Forest Environments\",\"authors\":\"Antonio C. B. Chiella, B. Teixeira, G. Pereira\",\"doi\":\"10.1109/ICUAS.2019.8797822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.\",\"PeriodicalId\":426616,\"journal\":{\"name\":\"2019 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2019.8797822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

森林中未命名车辆的自主导航是一项具有挑战性的任务。在这种环境下,由于树木的树冠,基于gnss的导航可能会降级甚至不可用。本文提出了一种融合GNSS、AHRS和lidar的飞行器状态估计方法。在我们的激光雷达里程计解决方案中,树干被用于基于特征的扫描匹配算法,以估计车辆的相对运动。该方法采用基于无气味卡尔曼滤波的鲁棒自适应融合算法。在实际森林环境中,四旋翼飞行器导航过程中收集的实验数据证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Estimation for Aerial Vehicles in Forest Environments
Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信