用于数据库上top-k聚合查询的瘦监视层

DBRank '13 Pub Date : 2013-08-30 DOI:10.1145/2524828.2524831
F. Alvanaki, S. Michel
{"title":"用于数据库上top-k聚合查询的瘦监视层","authors":"F. Alvanaki, S. Michel","doi":"10.1145/2524828.2524831","DOIUrl":null,"url":null,"abstract":"We consider the problem of maintaining a large set of top-k rankings over the update stream of a database. The rankings stem from top-k aggregation queries that are given a-priori based on the application scenario, for instance created along dimensions of a traditional data warehouse, for efficient automated reporting/detection of changes. The focus on only the top part of a ranking enables efficient buffering techniques to limit expensive interactions with the underlying database, while still guaranteeing correct top-k rankings at all times. This is achieved by employing conservative rank (score) estimates of previously unseen items that are not in the top-k result so far. The proposed family of maintenance algorithms further exploits the relations between the monitored rankings known from multi-query optimisation. We present results of a preliminary experimental evaluation using TPC-H data to study the performance of our algorithms.","PeriodicalId":206590,"journal":{"name":"DBRank '13","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A thin monitoring layer for top-k aggregation queries over a database\",\"authors\":\"F. Alvanaki, S. Michel\",\"doi\":\"10.1145/2524828.2524831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of maintaining a large set of top-k rankings over the update stream of a database. The rankings stem from top-k aggregation queries that are given a-priori based on the application scenario, for instance created along dimensions of a traditional data warehouse, for efficient automated reporting/detection of changes. The focus on only the top part of a ranking enables efficient buffering techniques to limit expensive interactions with the underlying database, while still guaranteeing correct top-k rankings at all times. This is achieved by employing conservative rank (score) estimates of previously unseen items that are not in the top-k result so far. The proposed family of maintenance algorithms further exploits the relations between the monitored rankings known from multi-query optimisation. We present results of a preliminary experimental evaluation using TPC-H data to study the performance of our algorithms.\",\"PeriodicalId\":206590,\"journal\":{\"name\":\"DBRank '13\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DBRank '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2524828.2524831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DBRank '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2524828.2524831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑在数据库的更新流上维护一个大的top-k排名集的问题。排名源于top-k聚合查询,这些查询是基于应用程序场景先验给出的,例如沿着传统数据仓库的维度创建的,以便有效地自动报告/检测更改。只关注排名的顶部部分,可以使用有效的缓冲技术来限制与底层数据库的昂贵交互,同时仍然保证始终正确的top-k排名。这是通过使用保守的排名(分数)来估计以前未见过的、到目前为止不在前k结果中的项目。所提出的维护算法家族进一步利用了从多查询优化中已知的监控排名之间的关系。我们提出了一个初步的实验评估结果,使用TPC-H数据来研究我们的算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A thin monitoring layer for top-k aggregation queries over a database
We consider the problem of maintaining a large set of top-k rankings over the update stream of a database. The rankings stem from top-k aggregation queries that are given a-priori based on the application scenario, for instance created along dimensions of a traditional data warehouse, for efficient automated reporting/detection of changes. The focus on only the top part of a ranking enables efficient buffering techniques to limit expensive interactions with the underlying database, while still guaranteeing correct top-k rankings at all times. This is achieved by employing conservative rank (score) estimates of previously unseen items that are not in the top-k result so far. The proposed family of maintenance algorithms further exploits the relations between the monitored rankings known from multi-query optimisation. We present results of a preliminary experimental evaluation using TPC-H data to study the performance of our algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信